點P是橢圓
x2
2
+y2=1上的一點,F(xiàn)1和F2是焦點,且∠F1PF2=30°,求△F1PF2的面積.
考點:橢圓的簡單性質
專題:綜合題,圓錐曲線的定義、性質與方程
分析:根據(jù)橢圓的定義,得|PF1|+|PF2|=2a=2
2
…①,再在△F1PF2中用余弦定理,得|PF1|2+|PF2|2-2|PF1||PF2|cos30°=|F1F2|2=(2c)2=4…②.由①②聯(lián)解,得(2+
3
)|PF1|•|PF2|=4,最后用根據(jù)正弦定理關于面積的公式,可得△PF1F2的面積.
解答: 解:在橢圓
x2
2
+y2=1中,a=
2
,b=1,∴c=1
又∵點P在橢圓上,∴|PF1|+|PF2|=2a=2
2
①(6分)
由余弦定理知:|PF1|2+|PF2|2-2|PF1||PF2|cos30°=|F1F2|2=(2c)2=4 ②(8分)
把①兩邊平方得|PF1|2+|PF2|2+2|PF1|•|PF2|=8,③
③-②得(2+
3
)|PF1|•|PF2|=4,
∴|PF1|•|PF2|=4(2-
3
),(10分)
S△PF1F2=
1
2
|PF1|•|PF2|sin30°=2-
3
(12分)
點評:本題給出橢圓上一點對兩個焦點的張角為30°,求橢圓兩焦點與該點構成三角形的面積,著重考查了橢圓的簡單性質和正、余弦定理等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),又f(x+
π
2
)=f(x-
π
2
),且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a4-a3=2,且2a1為3a1和a3的等差中項,求數(shù)列{an}的通項公式an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若C
 
3
n
=C
 
3
n-1
+C
 
4
n-1
,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x2,x+1),
b
=(1-x,t),函數(shù)f(x)=
a
b

(Ⅰ)若t=0,求f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)f(x)的兩個極值點分別在區(qū)間(-1,1)和(1,+∞)上,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xln(1+x)-a(x+1)(x>0),其中a為實常數(shù).
(1)若函數(shù)g(x)=f(x)-
2x
1+x
≥0
定義域內(nèi)恒成立,求a的取值范圍;
(2)證明:當a=0時,
f(x)
x2
≤1
;
(3)求證:
1
2
+
1
3
+…+
1
n+1
<ln(1+n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩個二次函數(shù)f(x)=x2+bx+c與g(x)=-x2+2x+d的圖象有唯一的公共點P(1,-2),
(Ⅰ)求b,c,d的值;
(Ⅱ)設F(x)=(f(x)+m)•g′(x),若F(x)在[-2,0]上是單調函數(shù),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

巳知等差數(shù)列{an}中,a4=14,前10項和S10=185.
(1)求an
(2)若數(shù)列{an}滿足:bn+3n=an+3×2n,求數(shù)列{bn}的前n項和Gn

查看答案和解析>>

同步練習冊答案