2.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是100cm3,表面積是($124+2\sqrt{34}$)cm2

分析 由三視圖知幾何體為長方體砍去一個(gè)三棱錐,根據(jù)三視圖的數(shù)據(jù)求出長方體的棱長、三棱錐的高和底面上的邊長,代入體積公式和面積公式計(jì)算即可.

解答 解:由三視圖可得,原幾何體為:一個(gè)長寬高分別為6cm、3cm、6cm的長方體砍去一個(gè)三棱錐,
且三棱錐的底面為直角邊分別為3cm、4cm直角三角形,高為4cm,如圖:
∴該幾何體的體積V=3×6×6-$\frac{1}{3}×\frac{1}{2}×3×4×4$=108-8=100(cm3),
表面積S=2(6×3×2+6×6)-$\frac{1}{2}$(3×4×2+4×4)+$\frac{1}{2}×4\sqrt{2}×\sqrt{{5}^{2}-(2\sqrt{2})^{2}}$
=$124+2\sqrt{34}$(cm2).
故答案為:100cm3;($124+2\sqrt{34}$)cm2

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是判斷幾何體的形狀及相關(guān)數(shù)據(jù)所對(duì)應(yīng)的幾何量,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(2x)的定義域?yàn)閇-1,1],則f(x)的定義域?yàn)閇$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=1-i(i為虛數(shù)單位),$\overline{z}$是z的共軛復(fù)數(shù),則|$\frac{1}{z}$|的值為( 。
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點(diǎn),N為AC中點(diǎn).
(Ⅰ)求證:PC⊥AD;
(Ⅱ)在棱PB上是否存在一點(diǎn)Q,使得面MNQ平行面PAD,若存在,指出點(diǎn)Q的位置并證明;若不存在,請(qǐng)說明理由;
(Ⅲ)求點(diǎn)D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=sin2x-cos2x,則f(x)在$x∈[{0,\frac{π}{2}}]$時(shí)的值域是[-1,$\sqrt{2}$];若將函數(shù)y=f(x)的圖象向左平移a(a>0)個(gè)單位長度得到的圖象恰好關(guān)于直線$x=\frac{π}{4}$對(duì)稱,則實(shí)數(shù)a的最小值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為正數(shù),且對(duì)任意x∈R,都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),則實(shí)數(shù)x的取值范圍是( 。
A.(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.甲、乙兩位同學(xué)各拿出六張游戲牌,用作投骰子的獎(jiǎng)品,兩人商定:骰子朝上的面的點(diǎn)數(shù)為奇數(shù)時(shí)甲得1分,否則乙得1分,先積得3分者獲勝得所有12張游戲牌,并結(jié)束游戲.比賽開始后,甲積2分,乙積1分,這時(shí)因意外事件中斷游戲,以后他們不想再繼續(xù)這場游戲,下面對(duì)這12張游戲牌的分配合理的是( 。
A.甲得9張,乙得3張B.甲得6張,乙得6張
C.甲得8張,乙得4張D.甲得10張,乙得2張

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把函數(shù)f(x)=sinx(x∈[0,2π])的圖象向右平移$\frac{π}{3}$個(gè)單位后得到函數(shù)g(x)的圖象,則f(x)與g(x)的圖象所圍成的面積為( 。
A.1B.$\sqrt{3}$C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.邊長分別為a、b的矩形,按圖中所示虛線剪裁后,可將兩個(gè)小矩形拼接成一個(gè)正四棱錐的底面,其余恰好拼接成該正四棱錐的4個(gè)側(cè)面,則$\frac{a}$的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案