已知直線l1:x+2ay-1=0與l2:(2a-1)x-ay-1=0平行,則a的值是
 
考點:直線的一般式方程與直線的平行關系
專題:直線與圓
分析:先檢驗當a=0時,是否滿足兩直線平行,當a≠0時,兩直線的斜率都存在,由 
2a-1
a
=-
1
2a
≠1,解得a的值.
解答: 解:當a=0時,兩直線的斜率都不存在,
它們的方程分別是x=1,x=-1,顯然兩直線是平行的.
當a≠0時,兩直線的斜率都存在,故它們的斜率相等,
2a-1
a
=-
1
2a
≠1,解得:a=
1
4

綜上,a=0或
1
4
,
故答案為:0或
1
4
;
點評:本題考查兩直線平行的條件,要注意特殊情況即直線斜率不存在的情況,要進行檢驗.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)2eax(a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在實數(shù)a<0,使得f(x)≤kx+k對任意的x∈[-1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(Ⅰ)求證:平面CFB1⊥平面EFB1;
(Ⅱ)若求三棱錐B1-EFC的體積為1,求此正方體的棱長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+m(A>0,ω>0,|φ|<
π
2
)的最大值為4,最小值為0,兩條對稱軸間的距離為
π
2
,直線x=
π
6
是其圖象的一條對稱軸,則符合條件的解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在m∈R,使函數(shù)f(x)=|x2-16|-x2+4x-m在[-1,a](a∈N*)上有三個零點,則滿足條件的a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

大家知道:在平面幾何中,三角形的三條中線相交于一點,這個點叫三角形的重心,并且重心分中線之比為2:1(從頂點到中點).據(jù)此,我們拓展到空間:把空間四面體的頂點與對面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點,這點叫此四面體的重心.類比上述命題,請寫出四面體重心的一條性質:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex+e-x的導函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是定義在R上的增函數(shù),且y=f(x)的圖象關于點(6,0)對稱.若實數(shù)x,y滿足不等式
f(x2-6x)+f(y2-8y+36)≤0,則x2+y2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知tanA=
1
4
,tanB=
3
5
,且△ABC最大邊的長為
17
,則△ABC最小邊的長為
 

查看答案和解析>>

同步練習冊答案