A. | $\frac{π}{6}$或$\frac{5π}{6}$ | B. | $\frac{π}{4}$或$\frac{5π}{6}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | -$\frac{π}{6}$或-$\frac{5π}{6}$ |
分析 求直線傾斜角,需先求出直線的斜率,根據(jù)斜率與傾斜角的關(guān)系,確定傾斜角的值.
將直線與圓的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,得出直線的斜率取值.
解答 解:直線普通方程為:y=tanαx,
記tanα=k,則直線方程為y-kx=0.
圓的普通方程為:(x-4)2+y2=4.
∵直線與圓相切
∴$\frac{|-4k|}{\sqrt{1+{k}^{2}}}=2$
解得:$k=±\frac{\sqrt{3}}{3}$.
∴直線方程為$y=±\frac{\sqrt{3}}{3}x$.
又傾斜角β取值范圍為[0,π),且$tanβ=±\frac{\sqrt{3}}{3}$.
∴直線傾斜角為$\frac{π}{6}或\frac{5π}{6}$.
故選擇:A.
點(diǎn)評 考查直線與圓的參數(shù)方程,直線傾斜角求法,直線與圓的位置關(guān)系,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 對任意的點(diǎn)P,都有T(S6(P))=T(P) | |
B. | 至少存在4個單位圓上的P,使得T(S3(P))=T(P) | |
C. | 若點(diǎn)P的坐標(biāo)為(1,0),則有T(S(P))=$\frac{\sqrt{3}}{2}$ | |
D. | 對任意的點(diǎn)P,都有T(P)+T(S2(P))+T(S4(P))=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 與m有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com