在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足,P點(diǎn)的軌跡為曲線C2

(Ⅰ)求C2的方程

(Ⅱ)在以O(shè)為極點(diǎn),x 軸的正半軸為極軸的極坐標(biāo)系中,射線與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求.

 

【答案】

(1)   

(2)

【解析】(I)利用相關(guān)點(diǎn)法列出動(dòng)點(diǎn)P與動(dòng)點(diǎn)M的關(guān)系,代入點(diǎn)M的軌跡方程化簡(jiǎn)即可;(Ⅱ)先利用極坐標(biāo)知識(shí)求出點(diǎn)A和B的極坐標(biāo),然后求解距離(I)設(shè)P(x,y),則由條件知M().由于M點(diǎn)在C1上,所以 

即  從而的參數(shù)方程為為參數(shù))

(Ⅱ)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為。

射線的交點(diǎn)的極徑為

射線的交點(diǎn)的極徑為。

所以.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)
的距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若
OA
OB
,求k的值;
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有|
OA
|>|
OB
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,已知△ABC的頂點(diǎn)A(-1,0)和C(1,0),頂點(diǎn)B在橢圓
x2
4
+
y2
3
=1
上,則
sinA+sinC
sinB
的值是( 。
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系xOy中,已知圓O:x2+y2=4,點(diǎn)A(1,0),B為直線x=4上任意一點(diǎn),直線AB交圓O于不同兩點(diǎn)M,N.
(1)若MN=
14
,求點(diǎn)B的坐標(biāo);
(2)若
MA
=2
AN
,求直線AB的方程;
(3)設(shè)
AM
MB
,
AN
NB
,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=1+
3
2
t
y=
1
2
t
(t為參數(shù)).以O(shè)為極點(diǎn),x軸正方向極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程是ρ2-4ρcosθ+3=0.則圓心到直線的距離是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西山區(qū)模擬)在直角坐標(biāo)系xoy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)),現(xiàn)以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,
(1)寫出曲線C的極坐標(biāo)方程.
(2)如果曲線E的極坐標(biāo)方程是θ=
π
4
(ρ≥0)
,曲線C、E相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案