【題目】已知O為坐標(biāo)原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).

1)設(shè)函數(shù),試求的伴隨向量

2)記向量的伴隨函數(shù)為,求當(dāng)的值;

3)由(1)中函數(shù)的圖象(縱坐標(biāo)不變)橫坐標(biāo)伸長為原來的2倍,再把整個圖象向右平移個單位長度得到的圖象,已知,,問在的圖象上是否存在一點P,使得.若存在,求出P點坐標(biāo);若不存在,說明理由.

【答案】123)存在,

【解析】

(1)利用三角函數(shù)誘導(dǎo)公式化簡函數(shù)得,根據(jù)題意寫出伴隨向量; (2)根據(jù)題意求出函數(shù),再由求出,由展開代入相應(yīng)值即可得解;(3) 根據(jù)三角函數(shù)圖像變換規(guī)則求出的解析式,設(shè),由列出方程求出滿足條件的點P的坐標(biāo)即可.

(1)∵

的伴隨向量

(2)向量的伴隨函數(shù)為,

,

(3)由(1)知:

將函數(shù)的圖像(縱坐標(biāo)不變)橫坐標(biāo)伸長為原來的2倍,得到函數(shù)

再把整個圖像向右平移個單位長得到的圖像,得到

設(shè),∵

,

又∵,∴

*

,∴

又∵

∴當(dāng)且僅當(dāng)時,同時等于,這時(*)式成立

∴在的圖像上存在點,使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設(shè),記數(shù)列的前項和為

①求;

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),則下列結(jié)論錯誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m,n為兩條不同的直線,,為兩個不同的平面,則下列命題中正確的有  

,, ,

,

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,MPC中點.求證:

(1)PA∥平面MDB;

(2)PDBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點有且只有四個.類似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點 ( )

A. 有且只有一個 B. 有且只有三個 C. 有且只有四個 D. 有且只有五個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來,為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,并整理得到頻率分布直方圖:

1)求圖中的a值;

2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中,各抽取多少人;

3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)設(shè),當(dāng)時,求函數(shù)的定義域,判斷并證明函數(shù)的奇偶性;

2)是否存在實數(shù),使函數(shù)上單調(diào)遞減,且最小值為1?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l12xy20l2x2y40,點P(1, m)

)若點P到直線l1, l2的距離相等,求實數(shù)m的值;

)當(dāng)m1時,已知直線l經(jīng)過點P且分別與l1, l2相交于A, B兩點,若P恰好

平分線段AB,求A, B兩點的坐標(biāo)及直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案