如圖,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,二面角P-AC-B的大小為45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.
分析:(I)由題設(shè)知BC=5,平面APB⊥平面ABC,∠PAB是二面角P-AC-B的平面角,由此能求出二面角P-BC-A的正切值.
(II)以AC為x軸,以AB為y軸,以過點(diǎn)A作MP的平行線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C-PB-A的正切值.
解答:解:(I)∵△ABC中,∠BAC=90°,AB=4,AC=3,
∴BC=5,
∵平面ABC外一點(diǎn)P在平面ABC內(nèi)的射影是AB中點(diǎn)M,
∴平面APB⊥平面ABC,
∵∠BAC=90°,∴AC⊥平面APB,
∴∠PAB是二面角P-AC-B的平面角,
∵二面角P-AC-B的大小為45°,
∴∠PAB=45°,
∴PM=AM=
1
2
AB
=2,
作MD⊥BC,交BC于D,連接PD,
則∠PDM是二面角P-BC-A的平面角,
∵△BDM∽△BAC,∴
BM
BC
=
DM
AC

DM=
BM•AC
BC
=
2×3
5
=
6
5
,
∴tan∠PDM=
PM
DM
=
2
6
5
=
5
3
,
故二面角P-BC-A的正切值為
5
3

(II)以AC為x軸,以AB為y軸,以過點(diǎn)A作MP的平行線為z軸,建立空間直角坐標(biāo)系,
∵△ABC中,∠BAC=90°,AB=4,AC=3,PM=2,AM=2,
∴C(3,0,0),B(0,4,0),P(0,2,2),A(0,0,0),
CP
=(-3,2,2)
,
CB
=(-3,4,0)
,
AP
=(0,2,2)
,
AB
=(0,4,0)
,
設(shè)平面CPB的法向量為
m
=(x1,y1,z1)
,則
m
CP
=0
,
m
CB
=0
,
-3x1+2y1+2z1=0
-3x1+4y1=0
,解得
m
=(4,3,3)

設(shè)平面APB的法向量為
n
=(x2,y2z2)
,則
n
AP
=0
,
n
AB
=0

2y2+2z2=0
4y2=0
,解得
n
=(1,0,0)
,
設(shè)二面角C-PB-A的平面角為θ,
cosθ=|cos<
m
,
n
>|=
4
34

∴tanθ=
3
2
4

∴二面角C-PB-A的正切值為
3
2
4
點(diǎn)評(píng):本題考查二面角的正切值的求法,解題時(shí)要認(rèn)真審題,合理地化立體問題為平面問題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,BC=2
3
AB
AC
=4,
AC
CB
=2
,雙曲線M是以B、C為焦點(diǎn)且過A點(diǎn).
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線M的方程;
(Ⅱ)設(shè)過點(diǎn)E(1,0)的直線l分別與雙曲線M的左、右支交于
F、G兩點(diǎn),直線l的斜率為k,求k的取值范圍.;
(Ⅲ)對(duì)于(Ⅱ)中的直線l,是否存在k≠0使|OF|=|OG|若有求出k的值,若沒有說明理由.(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
,
AP
=m
AB
+
2
11
AC
,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長線交AC、CF于E、F,
求證:PB2=PE•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,∠B=60°,AD,CE是角平分線.
求證:AE+CD=AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D在BC邊上,且AC=2,BC=2.5,AD=1,BD=0.5,則AB的長為
 
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案