已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(I)求a1,a3,a5,a7及a2n(n≥4)(不必證明);
(Ⅱ)求數(shù)列{an}的前2n項和S2n
【答案】分析:(Ⅰ)首先因式分解求得方程的兩根,由條件a2k-1≤a2k寫出當(dāng)k=1,2,3,4時相鄰兩項,
(Ⅱ)由(1),尋找規(guī)律,得到數(shù)列{an}中的相鄰兩項a2k-1、a2k的通項,最后采用分組求和的方法求數(shù)列{an}的前2n項和S2n
解答:解:(I)解:易求得方程x2-(3k+2k)x+3k•2k=0的兩個根為x1=3k,x2=2k
當(dāng)k=1時x1=3,x2=2,所以a1=2,a2=3
當(dāng)k=2時,x1=6,x2=4,所以a3=4,a4=6
當(dāng)k=3時,x1=9,x2=8,所以a5=8,a6=9
當(dāng)k=4時,x1=12,x2=16,所以a7=12,a8=16
因為n≥4時,2n>3n,所以a2n-1=3(2n-1),a2n=2n(n≥4)
(Ⅱ)S2n=a1+a2+…+a2n=(3+6+…+3n)+(2+22+…+2n
=
點評:本題主要考查等差、等比數(shù)列的基本知識,考查運(yùn)算及推理能力.對于此類問題要認(rèn)真審題、冷靜解析,加上扎實的基本功就可以解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(I)求a1,a3,a5,a7及a2n(n≥4)(不必證明);
(Ⅱ)求數(shù)列{an}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中的各項均為正數(shù),且滿足a1=2,
an+1-1
an-1
=
2an
an+1
(n∈N*)
.記bn=an2-an,數(shù)列{bn}的前n項和為xn,且f(xn)=
1
2
xn

(Ⅰ)數(shù)列{bn}和{an}的通項公式;
(Ⅱ)求證:
n-1
2
f(x1)
f(x2)
+
f(x2)
f(x3)
+…+
f(xn)
f(xn+1)
n
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中的相鄰兩項a2k-1,a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(Ⅰ)求a1,a3,a5,a7;
(Ⅱ)求數(shù)列{an}的前2n項和S2n
(Ⅲ)記f(n)=
1
2
(
|sinn|
sinn
+3)
Tn=
(-1)f(2)
a1a2
+
(-1)f(3)
a3a4
+
(-1)f(4)
a5a6
+…+
(-1)f(n+1)
a2n-1a2n
,求證:
1
6
Tn
5
24
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•崇明縣二模)已知數(shù)列{an}中的相鄰兩項a2k-1,a2k(k=1,2,3…)是關(guān)于x的方程x2-(4k+2+2k)x+(2k+1)×2k+1=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(1)求a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項an;
(3)求數(shù)列{an}的前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省普通高中學(xué)生學(xué)業(yè)水平考試數(shù)學(xué)樣卷(解析版) 題型:解答題

已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(I)求a1,a3,a5,a7及a2n(n≥4)(不必證明);
(Ⅱ)求數(shù)列{an}的前2n項和S2n

查看答案和解析>>

同步練習(xí)冊答案