【題目】已知向量,是坐標(biāo)原點(diǎn),若,且方向是沿的方向繞著點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角得到的,則稱經(jīng)過(guò)一次變換得到,現(xiàn)有向量經(jīng)過(guò)一次變換后得到,經(jīng)過(guò)一次變換后得到,…,如此下去,經(jīng)過(guò)一次變換后得到,設(shè),,,則等于(

A.B.

C.D.

【答案】B

【解析】

根據(jù)題意,可得,,即當(dāng)時(shí),一次,變換將逆時(shí)針旋轉(zhuǎn)1弧度,再將所得向量的長(zhǎng)度再伸長(zhǎng)為原來(lái)的倍得到向量.因此當(dāng)時(shí),運(yùn)用矩陣變換公式,算出逆時(shí)針旋轉(zhuǎn)1弧度所得向量,從而得到,,,所以.接下來(lái)再對(duì)、、各項(xiàng)在時(shí)的情況進(jìn)行計(jì)算,對(duì)照所得結(jié)果可得只有項(xiàng)是正確的選項(xiàng)

根據(jù)題意,,

一次,變換就是將向量逆時(shí)針旋轉(zhuǎn)1弧度,再將長(zhǎng)度伸長(zhǎng)為原來(lái)的倍,

逆時(shí)針旋轉(zhuǎn)1弧度而得,且

設(shè)向量逆時(shí)針旋轉(zhuǎn)1弧度,所得的向量為,則有

,即向量逆時(shí)針旋轉(zhuǎn)1弧度,

得到向量,再將的模長(zhǎng)度伸長(zhǎng)為原來(lái)的倍,

得到,,

因此當(dāng)時(shí),,,即,由此可得

對(duì)于,當(dāng)時(shí),與計(jì)算結(jié)果不相等,故不正確;

對(duì)于,當(dāng)時(shí),與計(jì)算結(jié)果相等,故正確;

對(duì)于,當(dāng)時(shí),與計(jì)算結(jié)果不相等,故不正確;

對(duì)于,當(dāng)時(shí),與計(jì)算結(jié)果不相等,故不正確

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(

400

500

概率

作物市場(chǎng)價(jià)格(元/

5

6

概率

1)設(shè)表示在這塊地上種植1季此作物的利潤(rùn),求的分布列(利潤(rùn)產(chǎn)量市場(chǎng)價(jià)格成本);

2)若在這塊地上連續(xù)3季種植此作物,求這3季中的利潤(rùn)都在區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)是定義在R上的偶函數(shù),且對(duì)任意的xR恒有fx+1)=fx1),已知當(dāng)x[01]時(shí),fx)=(1x,則

2是函數(shù)fx)的一個(gè)周期;

②函數(shù)fx)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);

③函數(shù)fx)的最大值是1,最小值是0

x1是函數(shù)fx)的一個(gè)對(duì)稱軸;

⑤當(dāng)x∈(3,4)時(shí),fx)=(x3.

其中所有正確命題的序號(hào)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線經(jīng)過(guò)點(diǎn),且與極軸所成的角為.

1)求曲線的普通方程及直線的參數(shù)方程;

2)設(shè)直線與曲線交于兩點(diǎn),若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:

①點(diǎn)的軌跡關(guān)于軸對(duì)稱;②的最小值為2;

③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),

其中,所有正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖所示多面體中,AD平面PDC,ABCD為平行四邊形,E,F分別為AD,BP的中點(diǎn),AD=,AP=PC=.

)求證:EF平面PDC;

)若CDP90°,求證BEDP;

)若CDP120°,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心極坐標(biāo)為(3π),半徑為1的圓.

1)求曲線C1的參數(shù)方程和C2的直角坐標(biāo)方程;

2)設(shè)M,N分別為曲線C1,C2上的動(dòng)點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC90°,∠BAC30°,A1AA1CAC,EF分別是AC,A1B1的中點(diǎn).

1)證明:EFBC

2)求直線EF與平面A1BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓M1ab0)的長(zhǎng)軸長(zhǎng)為2,離心率為,過(guò)點(diǎn)(0,1)的直線lM交于A,B兩點(diǎn),且

1)求M的方程;

2)求點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案