設(shè)集合M=[0,1),N=[1,2),函數(shù)f(x)=
2x       (x∈M)
4-2x  (x∈N)

(1)若x∈M,g(x)=f2(x)-2f(x)+a,且g(x)的最小值為1,求實數(shù)a的值;
(2)若x0∈M,且f(f(x0))∈M,求x0的取值范圍.
考點:二次函數(shù)在閉區(qū)間上的最值,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)若x∈M,令t=2x,則y=(t-1)2+a-1,且t∈[1,2),再利用二次函數(shù)的性質(zhì)求得函數(shù)的最小值,再根據(jù)函數(shù)的最小值為1,求得a的值.
(2)當x∈M,f(x)∈[1,2);當x∈N,f(x)∈[0,2],令t=f(x0),則f(t)∈M,即0≤f(t)≤1,求得t的范圍,可得f(x0)的范圍,從而求得x0的取值范圍.
解答: 解:(1)若x∈M,令t=2x,則y=t2-2t+a=(t-1)2+a-1,且t∈[1,2),
故當t=1時,函數(shù)取得最小為a-1=1,∴a=2.
(2)當x∈M,f(x)=2x∈[1,2);當x∈N,f(x)=4-2x∈[0,2],
令t=f(x0),∴f(t)∈M.
∵0≤f(t)≤1,∴0≤4-2t<1,∴
3
2
<t<3
,
3
2
<f(x0)<α
,∴
3
2
2x0<2
,∴log2
3
2
x0<1
,即x0的取值范圍為(log2
3
2
,1).
點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,求函數(shù)的值域,注意換元過程中變量范圍的改變,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是(  )
A、y=3x
B、y=|x|+1
C、y=-x2+1
D、y=
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形的面積等于
π
6
cm2,弧長為 
π
3
cm,則圓心角等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)若直線l:y=kx+m與曲線C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間(-∞,0)上為增函數(shù)的是(  )
A、y=1
B、y=1+x2
C、y=-x2-2x-1
D、y=
2-x
1-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a,b滿足(
1
2
)a>(
1
2
)b
,則下列不等式一定成立的是( 。
A、a2>b2
B、|a|<|b|
C、log2a<log2b
D、1-2a>1-2b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{xn},{yn}滿足:x1=x2=1,y1=y2=2,并且
xn+1
xn
=λ•
xn
xn-1
,
yn+1
yn
≥λ•
yn
yn-1
(λ為非零參數(shù),n=2,3,4…)
(1)若x1,x3,x5成等比數(shù)列,求參數(shù)λ的值;
(2)當λ>0時,證明:
xn+1
yn+1
xn
yn
(n∈N*)
;
(3)當λ>1時,證明:
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
λ
λ-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為(  )
A、9+πB、6+π
C、6+3πD、9+3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為甲、乙兩名籃球運動員每場比賽的得分情況的莖葉圖,則甲運動員的得分的中位數(shù)是
 

查看答案和解析>>

同步練習冊答案