a∈Z,求使數(shù)學(xué)公式>2a-5對(duì)n∈N恒成立的a的最大值.

解:令f(n)=
則f(n+1)=++
f(n+1)-f(n)=->0
∴f(n)是單調(diào)遞增函數(shù),故最小值為f(0)=1+++=
∴2a-5<解得a<
故a的最大值為3
分析:先構(gòu)造函數(shù)f(n)=,求出f(n+1),利用f(n+1)-f(n)的符號(hào)確定f(n)的單調(diào)性,求出f(n)的最小值,建立不等關(guān)系解之即可,注意條件a∈Z.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性,以及不等式恒成立問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x(2-k)(1+k),k∈Z,且f(x)在(0,+∞)上單調(diào)遞增.
(1)求實(shí)數(shù)k的值,并寫(xiě)出相應(yīng)的函數(shù)f(x)的解析式;
(2)若F(x)=2f(x)-4x+3在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)試判斷是否存在正數(shù)q,使函數(shù)g(x)=1-qf(x)+(2q-1)x在區(qū)間[-1,2]上的值域?yàn)?span id="ztv9lpn" class="MathJye">[-4,
178
].若存在,求出q的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知復(fù)數(shù)z=a+bi,其中a、b為實(shí)數(shù),i為虛數(shù)單位,
.
z
為z的共軛復(fù)數(shù),且存在非零實(shí)數(shù)t,使
.
z
=
2+4i
t
-3ati
成立.
(1)求2a+b的值;
(2)若|z-2|≤5,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a∈Z,求使
1
n+1
+
1
n+2
+…+
1
4n+1
>2a-5對(duì)n∈N恒成立的a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省揭陽(yáng)一中高一(下)第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知冪函數(shù)f(x)=x(2-k)(1+k),k∈Z,且f(x)在(0,+∞)上單調(diào)遞增.
(1)求實(shí)數(shù)k的值,并寫(xiě)出相應(yīng)的函數(shù)f(x)的解析式;
(2)若F(x)=2f(x)-4x+3在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)試判斷是否存在正數(shù)q,使函數(shù)g(x)=1-qf(x)+(2q-1)x在區(qū)間[-1,2]上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173104008920686/SYS201311031731040089206019_ST/0.png">.若存在,求出q的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案