已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求a、b值;
(2)求函數(shù)f(x)的單調(diào)增、減區(qū)間分別是什么?

解:(1)∵f'(x)=3ax2+2bx-3
而f(x)在x=±1處取得極值,



(2)由(1)知f(x)=x3-3x,
f'(x)=3(x+1)(x-1)
列表如下:
x(-∞,-1)(-1,1)(1,+∞)
f'(x)+-+
f(x)單增單減單增
∴f(x)的單增區(qū)間分別是(-∞,-1),(1,+∞),單減區(qū)間是(-1,1).
分析:(1)已知函數(shù)f(x)=ax3+bx2-3x,對其進(jìn)行求導(dǎo),根據(jù)f(x)在x=±1處取得極值,得f′(±1)=0,從而求出a,b的值;
(2)利用導(dǎo)數(shù)求函數(shù)f(x)的單調(diào)區(qū)間,首先求出極值點(diǎn),再進(jìn)行求解;
點(diǎn)評:此題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,要知道極值點(diǎn)與f′(x)的關(guān)系,是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案