精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=alnx-ax-3(a∈R)
(1)求f(x)的單調區(qū)間;
(2)若函數f(x)的圖象在點(2,f)處切線的傾斜角為45°,且對于任意的t∈[1,2],函數g(x)=x3+x2(f(x)+
m
2
)
在區(qū)間(t,3)上總不為單調函數,求m的取值范圍.
(1)f/(x)=
a(1-x)
x
(x>0)
,
a>0時,f(x)在(0,1]上單調遞增,在[1,+∞)單調遞減;
a<0時,f(x)在(0,1]上單調遞減,在[1,+∞)單調遞增;
a=0時,f(x)不是單調函數.
(2)由f′(2)=1得a=-2,所以f(x)=-2lnx+2x-3,則g(x)=x3+(
m
2
+2)x2-2x
,
故g′(x)=3x2+(m+4)x-2
因為g(x)在(t,3)上總不是單調函數,且g′(0)=-2,
g(t)<0
g(3)>0

由題意知:對于任意的t∈[1,2],g′(t)<0恒成立,
綜上,
g(1)<0
g(2)<0
g(3)>0
?-
37
3
<m<-9

m的取值范圍為:-
37
3
<m<-9
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案