設函數(shù)
.
⑴求函數(shù)
的單調區(qū)間;
⑵求函數(shù)
的值域;
⑶已知
對
恒成立,求實數(shù)
的取值范圍.
(1)詳見解析;(2)
;(3)
.
試題分析:(1)判斷函數(shù)的單調區(qū)間,一般利用其導數(shù)的符號判斷,使導函數(shù)為正的區(qū)間是增區(qū)間,使函數(shù)為負的區(qū)間是減區(qū)間;(2)函數(shù)的值域則可利用(1)中得到的函數(shù)的單調性進行求解;(3)恒成立問題則常用分離參數(shù)的方法,轉化為求函數(shù)的最值問題,而求函數(shù)的最值則仍可利用導數(shù)去判斷函數(shù)的單調性.
試題解析:⑴
,由
解得
,
由
解得,
或
,
故函數(shù)
的單調遞增區(qū)間是
,單調遞減區(qū)間是
.
4分
⑵當
時,解得
,由⑴可知函數(shù)
在
上遞增,在
上遞減,
在區(qū)間
上,
;
在區(qū)間
上,
函數(shù)
的值域為
. 8分
⑶
,兩邊取自然對數(shù)得
,
對
恒成立,則
,
由⑵可知當
時,
,
. 12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
且
的圖象在它們與坐標軸交點處的切線互相平行.
(1)求
的值;
(2)若存在
使不等式
成立,求實數(shù)
的取值范圍;
(3)對于函數(shù)
與
公共定義域內的任意實數(shù)
,我們把
的值稱為兩函數(shù)在
處的偏差,求證:函數(shù)
與
在其公共定義域內的所有偏差都大于2
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
≠0,
∈R)
(Ⅰ)若
,求函數(shù)
的極值和單調區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
是函數(shù)
的極值點,求
的值;
(2)求函數(shù)
的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
的極值;
(2)求函數(shù)
的單調區(qū)間;
(3)是否存在實數(shù)
,使函數(shù)
在
上有唯一的零點,若有,請求出
的范圍;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
.
(Ⅰ)證明:
時,函數(shù)
在
上單調遞增;
(Ⅱ)證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)當
時,討論函數(shù)
在[
上的單調性;
(Ⅱ)如果
,
是函數(shù)
的兩個零點,
為函數(shù)
的導數(shù),證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
在區(qū)間
,0)內單調遞增,則
取值范圍是( )
查看答案和解析>>