分析 (Ⅰ)利用誘導(dǎo)公式化簡,再結(jié)合特殊角的三角函數(shù)值得答案;
(Ⅱ)由已知求得tanα,再把$\frac{2cosα-3sinα}{3cosα+4sinα}$轉(zhuǎn)化為正切求值.
解答 解:(Ⅰ)∵$α=\frac{π}{6}$,
∴$\frac{{2sin({π+α})cos({π-α})-cos({π+α})}}{{1+{{sin}^2}α+sin({π-α})-{{cos}^2}({π+α})}}$
=$\frac{(-2sinα)(-cosα)+cosα}{1+si{n}^{2}α+sinα-co{s}^{2}α}$=$\frac{sin2α+cosα}{2si{n}^{2}α+sinα}$=$\frac{sin\frac{π}{3}+cos\frac{π}{6}}{2×si{n}^{2}\frac{π}{6}+sin\frac{π}{6}}=\frac{2×\frac{\sqrt{3}}{2}}{2×\frac{1}{4}+\frac{1}{2}}=\sqrt{3}$;
(Ⅱ)由$\frac{tanα}{tanα-6}=-1$,得tanα=3.
∴$\frac{2cosα-3sinα}{3cosα+4sinα}$=$\frac{2-3tanα}{3+4tanα}=\frac{2-3×3}{3+4×3}$=$-\frac{7}{15}$.
點評 本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式及誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $-\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | [0,+∞) | C. | [1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{14}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com