設(shè)方程+1=0的解集為M;+x+q=0的解集為N,已知M∩N=,那么M∪N是

[  ]

A.
B.
C.
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若關(guān)于x的方程m(x-1)=3(x+2)的解為正數(shù),求實數(shù)m的取值范圍;
②設(shè)①中m的取值范圍用集合A表示,關(guān)于x的不等式(x-a)(2a-1-x)>0(a<1)的解集用集合B表示,若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(Ⅰ) 已知f(0)=1,
  (。┤鬴(x)<0的解集為(
12
,1)
,求f(x)的表達式;
  (ⅱ)若f(1)=0,且a<1,試用含a的代數(shù)式表示b,并求此時f(x)>0的解集.
(Ⅱ) 已知a=1,若x1,x2是方程f(x)=0的兩個根,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中新教材輔導(dǎo) 數(shù)學(xué)高中一年級 題型:013

設(shè)方程+1=0的解集為M;+x+q=0的解集為N,已知M∩N=,那么M∪N是

[  ]

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案