在等比數(shù)列{an}中,若a1+a2+a3+a4=,a2a3=-,則+++=   
【答案】分析:當(dāng)?shù)缺葦?shù)列{an}的公比q為1時,a2=a3,可得a2a3=a22大于0,與a2a3等于負(fù)值矛盾;故q不為1,利用等比數(shù)列的求和公式表示出a1+a2+a3+a4,又?jǐn)?shù)列數(shù)列{an}為等比數(shù)列,可得{}也為等比數(shù)列,利用等比數(shù)列的求和公式表示出所求的式子,表示出的兩式相除,化簡整理后再利用等比數(shù)列的通項(xiàng)公式變形得到其商等于a2a3的值,進(jìn)而根據(jù)a1+a2+a3+a4與a2a3的值即可求出所求式子的值.
解答:解:若q=1,可得a2=a3,a2a3=a22>0,不合題意;
∴q≠1,
∴a1+a2+a3+a4=,
又?jǐn)?shù)列{}表示首項(xiàng)為,公比為的等比數(shù)列,
+++=,
∵a2a3=-,a1+a2+a3+a4=,
兩式右邊相除得:=a12q3=a2a3=-,
+++==-
故答案為:-
點(diǎn)評:此題考查了等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的求和公式,其技巧性比較強(qiáng),解題的思路是根據(jù)題意等比數(shù)列{an}得出數(shù)列{}表示首項(xiàng)為,公比為的等比數(shù)列,分別利用前n項(xiàng)和公式表示出兩關(guān)系式,然后兩關(guān)系式相除,得到的商與a2a3的值相等,進(jìn)而求出所求式子的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項(xiàng)和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項(xiàng)和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習(xí)冊答案