【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.

(I)求該小組未能進(jìn)入第二輪的概率;

(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

【答案】(Ⅰ);

(Ⅱ)的分別列為

.

【解析】試題分析:(1)分別將甲、乙、丙第次猜對(duì)歌名記為事件, ,則, , 相互獨(dú)立.該小組未能進(jìn)入第二輪的概率

(2)利用相互獨(dú)立事件的概率計(jì)算公式、對(duì)立事件的概率計(jì)算公式即可得出.

試題解析:

分別將甲、乙、丙第次猜對(duì)歌名記為事件, ,則 , 相互獨(dú)立.

(Ⅰ)該小組未能進(jìn)入第二輪的概率

.

(Ⅱ)乙猜對(duì)歌曲次數(shù)的可能取值為0,1,2,3,

,

,

,

,

,

的分別列為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為曲線上任意一點(diǎn),且到定點(diǎn)的距離比到軸的距離多1

1)求曲線的方程;

2)點(diǎn)為曲線上一點(diǎn),過點(diǎn)分別作傾斜角互補(bǔ)的直線, 與曲線分別交于 兩點(diǎn),過點(diǎn)且與垂直的直線與曲線交于 兩點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上頂點(diǎn)為,右頂點(diǎn)為,離心率, 為坐標(biāo)原點(diǎn),圓 與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線 )與橢圓相交于兩不同點(diǎn),若橢圓上一點(diǎn)滿足,求面積的最大值及此時(shí)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由;

(Ⅱ)記,討論的單調(diào)性;

(Ⅲ)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在唯一的零點(diǎn),且,則實(shí)數(shù)_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的道物理題中隨機(jī)抽取道化學(xué)題中隨機(jī)抽取;道生物題中隨機(jī)抽取.使用合適的方法確定這個(gè)學(xué)生所要回答的三門學(xué)科的題的序號(hào)(物理題的編號(hào)為,化學(xué)題的編號(hào)為,生物題的編號(hào)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,

(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,

求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案