要證明“”可選擇的方法有以下幾種,其中最合理的是 .(填序號).①反證法,②分析法,③綜合法.

 

【解析】

試題分析:分析不等式的形式,判斷最合適證明的方法.

【解析】
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015030909464060715119/SYS201503090946415134797573_DA/SYS201503090946415134797573_DA.001.png">,是含有無理式的不等式,如果利用反證法,其形式與原不等式相同,所以反證法不合適;綜合法不容易找出證明的突破口,所以最還是的證明方法是分析法.

故答案為:②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

已知n為正偶數(shù),用數(shù)學(xué)歸納法證明時,若已假設(shè)n=k(k≥2)為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證n=( )時等式成立.

A.n=k+1 B.n=k+2 C.n=2k+2 D.n=2(k+2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:選擇題

對任意正數(shù)x,y不等式(k﹣)x+ky≥恒成立,則實(shí)數(shù)k的最小值是( )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題

用反證法證明命題“如果a>b,那么”時,假設(shè)的內(nèi)容是( )

A.= B.

C.= D.=

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題

用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么a、b、c中至少有一個偶數(shù)時,下列假設(shè)正確的是( )

A.假設(shè)a、b、c都是偶數(shù)

B.假設(shè)a、b、c都不是偶數(shù)

C.假設(shè)a、b、c至多有一個偶數(shù)

D.假設(shè)a、b、c至多有兩個偶數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

要證,只需證+1,即需證,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立.以上證明運(yùn)用了( )

A.比較法 B.綜合法 C.分析法 D.反證法

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

某同學(xué)證明++的過程如下:∵>0,∴,∴,∴++,則該學(xué)生采用的證明方法是( )

A.綜合法 B.比較法 C.反證法 D.分析法

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.1比較法練習(xí)卷(解析版) 題型:選擇題

已知a=20.5,,,則a,b,c的大小關(guān)系是( )

A.a>c>b B.a>b>c C.c>b>a D.c>a>b

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 1.1不等式練習(xí)卷(解析版) 題型:填空題

若a>b>0,則的最小值是 .

 

查看答案和解析>>

同步練習(xí)冊答案