7.某人在如圖所示的直角邊長為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如表所示:
X1234
Y51484542
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率;
(2)從所種作物中隨機(jī)選取一株,求它的年收獲量Y的分布列.

分析 (1)確定三角形地塊的內(nèi)部和邊界上的作物株數(shù),分別求出基本事件的個(gè)數(shù),即可求它們恰好“相近”的概率;
(2)確定變量的取值,求出相應(yīng)的概率,從而可得年收獲量的分布列.

解答 解:(1)所種作物總株數(shù)N=1+2+3+4+5=15,其中三角形地塊內(nèi)部的作物株數(shù)為3,邊界上的作物株數(shù)為12,從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株的不同結(jié)果有${C}_{3}^{1}{•C}_{12}^{1}=36$種,選取的兩株作物恰好“相近”的不同結(jié)果有3+3+2=8,∴從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率為$\frac{8}{36}=\frac{2}{9}$,
(2)先求從所種作物中隨機(jī)選取一株作物的年收獲量為Y的分布列
∵P(Y=51)=P(X=1),P(Y=48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可.
記nk為其“相近”作物恰有k株的作物株數(shù)(k=1,2,3,4),則n1=2,n2=4,n3=6,n4=3
由P(X=k)=$\frac{nk}{N}$得P(X=1)=$\frac{2}{15}$,P(X=2)=$\frac{4}{15}$,P(X=3)=$\frac{6}{15}$,P(X=4)=$\frac{3}{15}$
∴所求的分布列為

Y5148 45 42
 P $\frac{2}{15}$$\frac{4}{15}$$\frac{6}{15}$$\frac{3}{15}$ 
數(shù)學(xué)期望為E(Y)=$51×\frac{2}{15}+48×\frac{4}{15}+45×\frac{6}{15}+42×\frac{3}{15}=46$.

點(diǎn)評 本題考查古典概率的計(jì)算,考查分布列與數(shù)學(xué)期望,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求y=3x+$\frac{4}{x}$(x<0)的最大值,并求y取最大值時(shí)相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x+1)=$\frac{1}{f(x)}$.當(dāng)x∈[0,1)時(shí),f(x)=2x+1.給出下列命題:
①f(2013)+f(-2014)=$\frac{5}{2}$;             
②f(x)是定義域上周期為2的周期函數(shù);
③直線y=8x與函數(shù)y=f(x)圖象只有1個(gè)交點(diǎn); 
④y=f(x)的值域?yàn)椋?\frac{1}{4}$,$\frac{1}{2}$]∪[2,4)
其中正確命題的序號為:①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(m+1)x2+2(m-1)x在(0,4)上無極值,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|-3≤x<2},B={x|x≥m},且A⊆B,則實(shí)數(shù)m的取值范圍是( 。
A.{m|m≥-3}B.{m|m≤-3}C.{m|m≤2}D.{m|m≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列舉法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面積為a2sinB,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線2x-y-3=0的傾斜角為θ,則sin2θ的值是( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=x2-2ax+2a.
(1)若函數(shù)f(x)在區(qū)間[1,2]上的最小值是-3,求a的值;
(2)若不等式f(x)>0對于任意的x∈[-2,-1]恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案