9.已知a>0,則${∫}_{-a}^{a}$(xcosx-5sinx+2)dx=4a.

分析 利用導(dǎo)數(shù)的運(yùn)算法則和微積分基本定理即可得出.

解答 解:方法一:∵(xsinx+6cosx+2x)′=xcosx-5sinx+2,
∴${∫}_{-a}^{a}$(xcosx-5sinx+2)dx=(xcosx-5sinx+2)|${\;}_{-a}^{a}$=4a.
方法二:∵y=xcosx-5sinx為奇函數(shù)
${∫}_{-a}^{a}$(xcosx-5sinx)dx+${∫}_{-a}^{a}$2dx=0+2x|${\;}_{-a}^{a}$=4a,
故答案為:4a

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和微積分基本定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在平面四邊形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$與$\overrightarrow{BC}$的夾角為30°,求△ABC的面積S△ABC
(2)若$|{\overrightarrow{AC}}|=4,O$為AC的中點(diǎn),G為△ABC的重心(三條中線的交點(diǎn)),且$\overrightarrow{OG}$與$\overrightarrow{OD}$互為相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A={x|x2-x-6<0},B={x|-3≤x≤1},則A∪B等于( 。
A.[-2,1)B.(-2,1]C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓錐的底面半徑為1,側(cè)面展開圖的圓心角為60°,則此圓錐的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)中的a,b,c均為奇數(shù),求證:方程f(x)=0無(wú)整數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.方程xy2+x2y=1所表示的曲線( 。
A.關(guān)于x軸對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于原點(diǎn)對(duì)稱D.關(guān)于直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知數(shù)列{an}滿足lgxn+1=1+lgxn(n∈N*)且x1+x2+…+x100=1,求lg(x101+x102+…+x200)的值;
(2)已知數(shù)列{an}滿足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=2n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)數(shù)列{an}前n項(xiàng)和為Sn,滿足an=$\frac{3}{4}$Sn+$\frac{1}{2}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ax2+(1-a)x-1-lnx,a∈R.
(1)若函數(shù)在區(qū)間(2,4)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案