【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)當時, ,求的取值范圍.
【答案】(1)見解析(2).
【解析】試題分析:(1)根據(jù),對字母a分類討論,求出函數(shù)的單調(diào)區(qū)間;(2)當時,分離參數(shù),轉(zhuǎn)化為分別求的最小值,及的最大值,利用導(dǎo)數(shù),求其最大值即可.
試題解析:(1).
若,則,在單調(diào)遞增.若,當時, ;當時, .于是在單調(diào)遞減,在單調(diào)遞增.
(2)方法1:當時, ,即
因為函數(shù)在單調(diào)遞增,所以.
設(shè), ,當時, , 單調(diào)遞增;當時, , 單調(diào)遞減.故 ,所以.綜上, 的取值范圍為.
(2)方法2:設(shè),則當時, .
由,得.
,當時, , 單調(diào)遞增,所以.
若,當時, , 單調(diào)遞增,故.因為,所以.
若,由, ,知在存在唯一零點,設(shè)為,則.
當時, , 單調(diào)遞減;當時, , 單調(diào)遞增;故在有最小值,而.由得.
由(1)得在單調(diào)遞減,所以.
綜上, 的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)當p=3時,若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
()求的單調(diào)區(qū)間.
()證明:當時,方程在區(qū)間上只有一個零點.
()設(shè),其中若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市高中全體學生參加某項測評,按得分評為兩類(評定標準見表1).根據(jù)男女學生比例,使用分層抽樣的方法隨機抽取了10000名學生的得分數(shù)據(jù),其中等級為的學生中有40%是男生,等級為的學生中有一半是女生.等級為和的學生統(tǒng)稱為類學生,等級為和的學生統(tǒng)稱為類學生.整理這10000名學生的得分數(shù)據(jù),得到如圖2所示的頻率分布直方圖,
類別 | 得分() | |
表1
(I)已知該市高中學生共20萬人,試估計在該項測評中被評為類學生的人數(shù);
(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學生”的概率;
(Ⅲ)在這10000名學生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷與的大小.(只需寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com