精英家教網 > 高中數學 > 題目詳情
求橢圓
x2
4
+y2=1的長軸和短軸的長、離心率、焦點和頂點的坐標.
∵橢圓
x2
4
+y2=1,∴a2=4,b2=1.
∴a=2,b=1.c=
a2-b2
=
3

∴橢圓的長軸和短軸的長分別為2a=4,2b=2.
離心率e=
c
a
=
3
2

焦點
3
,0)
,
頂點(±2,0),(0,±1).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積
PF1
PF2
的取值范圍;
(2)設過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
(3)設A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

求橢圓
x24
+y2=1的長軸和短軸的長、離心率、焦點和頂點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1、F2分別是橢圓
x2
4
+y2=1
的左、右焦點.
(1)求橢圓
x2
4
+y2=1
的焦點坐標、離心率及準線方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)設過定點M(0,2)的直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設F1、F2分別是橢圓
x2
4
+y2=1
的左、右焦點.
(1)求橢圓
x2
4
+y2=1
的焦點坐標、離心率及準線方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)設過定點M(0,2)的直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案