【題目】已知向量,,函數(shù)
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象平移后得到函數(shù)g(x)的圖象,求g(x)在區(qū)間上的最值.
【答案】(Ⅰ)[kπ,kπ],k∈Z.(Ⅱ)最大值為3.最小值為﹣1;
【解析】
(Ⅰ)利用數(shù)量積的坐標表示,得到2sinxcosx+2cos2x。利用二倍角公式和輔助角公式將轉(zhuǎn)化為正弦型函數(shù),求出單調(diào)遞減區(qū)間即可.
(Ⅱ)按照要求平移得到g(x)=2sin(2x)+1,由x∈得到2x∈[,π],根據(jù)正弦函數(shù)圖像,得到最大值,最小值即可.
(Ⅰ)∵向量,,
函數(shù)
=2sinxcosx+2cos2x
sin2x+cos2x+1=2sin(2x)+1,
令2kπ2x2kπ,求得kπx≤kπ,
可得函數(shù)f(x)的單調(diào)減區(qū)間為[kπ,kπ],k∈Z.
(Ⅱ)將函數(shù)f(x)=2sin(2x)+1的圖象按平移后得到函數(shù)g(x)的圖象,
可得g(x)=2sin(2x)+1=2sin(2x)+1,
在區(qū)間x∈上,2x∈[0,π],2x∈[,π],
故當x=0時,g(x)取得最小值為﹣1;
當x時,g(x)取得最大值為3.
科目:高中數(shù)學 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當BMI數(shù)值大于或等于20.5時,我們說體重較重;當數(shù)值小于20.5時,我們說體重較輕;身高大于或等于170的我們說身高較高;身高小于170的我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖所示,請根據(jù)所得信息,完成下列列聯(lián)表,并判斷是否有95%的把握認為男體育特長生的身高對指數(shù)有影響;
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如下表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預報變量(體重)變化的貢獻率 (保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通過殘差分析,對于殘差(絕對值)最大的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤.已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應該為58(kg).請重新根據(jù)最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,
,,
().
() | 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(參考數(shù)據(jù))
,,,,,
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點M(0,4),且與兩坐標軸圍成三角形的周長為12.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )
A.該超市2018年的前五個月中三月份的利潤最高
B.該超市2018年的前五個月的利潤一直呈增長趨勢
C.該超市2018年的前五個月的利潤的中位數(shù)為0.8萬元
D.該超市2018年前五個月的總利潤為3.5萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、為曲線上兩點,與的橫坐標之和為.
(1)求直線的斜率;
(2)設弦的中點為,過點、分別作拋物線的切線,則兩切線的交點為,過點作直線,交拋物線于、兩點,連接、.證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從高三抽出名學生參加數(shù)學競賽,由成績得到如下的頻率分布直方圖.試利用頻率分布直方圖求:
(1)這名學生成績的眾數(shù)與中位數(shù);
(2)這名學生的平均成績.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學瑰寶,并稱為中國古典小說四大名著.某中學為了解本校學生閱讀四大名著的情況,隨機調(diào)查了100名學生,其中閱讀過《西游記》的學生有70位,只閱讀過《紅樓夢》的學生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學生人數(shù)與該校學生總數(shù)比值的估計值為( )
A.0.1B.0.2C.0.3D.0.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機抽取200人進行調(diào)查,當不處罰時,有80人會闖紅燈,處罰時,得到如下數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當處罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?
(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其它市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時.如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).假設該沙漏每秒鐘漏下的沙,且細沙全部漏入下部后,恰好堆成一個蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )
A.沙漏中的細沙體積為
B.沙漏的體積是
C.細沙全部漏入下部后此錐形沙堆的高度約為2.4cm
D.該沙漏的一個沙時大約是1985秒()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com