【題目】設(shè)遞增的等比數(shù)列{an}的前n項和為Sn , 已知2(an+an+2)=5an+1 , 且 ,
(1)求數(shù)列{an}通項公式及前n項和為Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項和為Tn .
【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,
則由2(an+an+1)=5an+1得,2q2﹣5q+2=0,解得 或q=2,
又由 知, ,∴a1=q,
∵{an}為遞增數(shù)列,∴
(2)解: ,
記數(shù)列{(n+1)2n+1}的首n項和為Pn,則 , ,
兩式相減得: ,
即 ,
又{2(n+1)}的前n項和為2(2+3+4+…+n+1)=n(n+3),
∴
【解析】(1)利用等比數(shù)列的通項公式與求和公式即可得出.(2)利用“錯位相減法”、等差數(shù)列與等比數(shù)列的求和公式即可得出.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數(shù)a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)若 ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=e2 , 當x∈(0,e]時,求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ex﹣a , g(x)=ln(x+2)﹣4ea﹣x , 其中e為自然對數(shù)的底數(shù),若存在實數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實數(shù)a的值為( )
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是橢圓 (0<b<2)的左、右焦點,過F1的直線l交橢圓于A,B兩點,若|AF2|+|BF2|最大值為5,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1在平面直角坐標系中的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ﹣4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程
(2)求曲線C1和C2兩交點之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線E:x2=2py(p>0)焦點F且傾斜角的60°直線l與拋物線E交于點M,N,△OMN的面積為4. (Ⅰ)求拋物線E的方程;
(Ⅱ)設(shè)P是直線y=﹣2上的一個動點,過P作拋物線E的切線,切點分別為A、B,直線AB與直線OP、y軸的交點分別為Q、R,點C、D是以R為圓心、RQ為半徑的圓上任意兩點,求∠CPD最大時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com