【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為,,,,有以下結(jié)論:

①當(dāng)時(shí),甲走在最前面;

②當(dāng)時(shí),乙走在最前面;

③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).

【答案】③④⑤

【解析】路程關(guān)于時(shí)間的函數(shù)關(guān)系,,,,

它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),二次函數(shù),一次函數(shù),和對(duì)數(shù)型函數(shù)模型.

當(dāng)時(shí),,∴命題①不正確;

當(dāng)時(shí),,∴命題②不正確;

對(duì)數(shù)型函數(shù)的變化是先快后慢,當(dāng)時(shí),甲、乙、丙、丁四個(gè)物體重合,從而可知當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面,命題③正確;

指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動(dòng)的時(shí)間足夠長(zhǎng)時(shí),最前面的物體一定是按照指數(shù)型函數(shù)運(yùn)動(dòng)的物體,即一定是甲物體,∴命題⑤正確.

結(jié)合對(duì)數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,命題④正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a<﹣1,函數(shù)f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實(shí)數(shù)m,n(m<n≤1),對(duì)任意t0∈(m,n),總存在兩個(gè)不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PDa,PAPCa

(1)求證:PD⊥平面ABCD;

(2)求證:平面PAC⊥平面PBD;

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點(diǎn),N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)若直線l被圓C截得的弦長(zhǎng)為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:函數(shù)y=sin2x的最小正周期為 ;命題q:函數(shù)y=cosx的圖象關(guān)于直線x= 對(duì)稱.則下列判斷正確的是(
A.p為真
B.¬q為假
C.p∧q為假
D.p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且.

1)試求的值;

2)用定義證明函數(shù)上單調(diào)遞增;

(3)設(shè)關(guān)于的方程的兩根為,試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意的恒成立?若存在,求出的取值范圍;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e﹣2<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)想通過(guò)做廣告來(lái)提高銷售額,經(jīng)預(yù)測(cè)可知本企業(yè)產(chǎn)品的廣告費(fèi)x(單位:百萬(wàn)元)與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

由表中的數(shù)據(jù)得線性回歸方程為 = x+ ,其中 =6.5,由此預(yù)測(cè)當(dāng)廣告費(fèi)為7百萬(wàn)元時(shí),銷售額為萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案