(本題滿分15分)已知函數
(Ⅰ)當時,求函數的單調區(qū)間;
(Ⅱ)若在是單調函數,求實數的取值范圍.
解:(Ⅰ) 當時,,
…………………………………………………………..…...2分,
當時,,所以的減區(qū)間是……………………………..………2分
當時,,所以的減區(qū)間是……………………………………….2分
(Ⅱ) ,.…………..….2分
①若在是單調減函數,則在上恒成立,不可能,故不可能在是單調減函數;…………………………………………………………………….……2分
②若在上是單調增函數,即在上恒成立,
所以在上恒成立,即在上恒成立,
令,因為在上單調減函數,,……….4分
所以a的取值范圍是……………………………………………………………………..1分
【解析】略
科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(0,1),,直線、都是圓的切線(點不在軸上).
(Ⅰ)求過點且焦點在軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于兩點,問是否存在定點使為常數?若存在,求出點的坐標及常數;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考理科數學 題型:解答題
(本題滿分15分)已知函數.
(Ⅰ)若為定義域上的單調函數,求實數m的取值范圍;
(Ⅱ)當時,求函數的最大值;
(Ⅲ)當,且時,證明:.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三下學期2月模擬考試文科數學 題型:解答題
(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,
(1)當直線的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題
(本題滿分15分)已知直線,曲線
(1)若且直線與曲線恰有三個公共點時,求實數的取值;
(2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com