已知a為實數(shù),(x+a)10展開式中x7的系數(shù)是-15,則a=   
【答案】分析:利用二項展開式的通項公式求出通項,令x指數(shù)為7求出展開式中x7的系數(shù),列出方程求出a.
解答:解:(x+a)10展開式的通項為Tr+1=arC10rx10-r
令10-r=7解得r=3
故展開式中x7的系數(shù)是a3C103
∴a3C103=-15解得a=
故答案為
點評:本題考查二項展開式的通項公式是解決二項展開式的特定項問題的工具.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實數(shù),f(x)=a-
22x+1
(x∈R)

(1)求證:對于任意實數(shù)a,y=f(x)在(-∞,+∞)上是增函數(shù);
(2)當(dāng)f(x)是奇函數(shù)時,若方程f-1(x)=log2(x+t)總有實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實數(shù),(x+a)10展開式中x7的系數(shù)是-15,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知a為實數(shù),(x+a)7展開式的二項式系數(shù)和為
128
;如果展開式中的x4的系數(shù)是-35,則a=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有2個小題,第1小題滿分6分,第2小題滿分10分.
已知a為實數(shù),f(x)=a-
22x+1
(x∈R)

(1)求證:對于任意實數(shù)a,y=f(x)在(-∞,+∞)上是增函數(shù);
(2)當(dāng)f(x)是奇函數(shù)時,若方程f-1(x)=log2(x+t)總有實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年北師大附中月考文) 已知a為實數(shù),f (x ) = (x2-4)(xa).

(1)若(-1) = 0,求f (x )在[-4,4]上的最大值和最小值;

(2)若f (x )在(-∞,-22,+∞)上都是遞增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案