已知函數(shù),
(1)   求函數(shù)的最小正周期;
(2)記的內(nèi)角A,B,C的對邊長分別為,若,求的值。
見解析
解:本題考查三角函數(shù)化簡及解三角形的能力.
(1) 


所以函數(shù)的最小正周期為。   ………5分
(2)由,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900364312.gif" style="vertical-align:middle;" />,所以 所以,即.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182900442337.gif" style="vertical-align:middle;" /> 所以由正弦定理,得 
當(dāng)
當(dāng)
的值為1或2.                ………….10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間的簡圖是(   )
A    B     
C      D      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之
和等于(        )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)的最小正周期為.
(Ⅰ)求的值; (Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間及其圖象的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
已知函數(shù)最小正周期為
(I)求的值及函數(shù)的解析式;
(II)若的三條邊,滿足,邊所對的角為.求角的取值范圍及函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,其中.若滿足,且的導(dǎo)函數(shù)的圖象關(guān)于直線對稱.
(Ⅰ)求的值;
(Ⅱ)若關(guān)于的方程在區(qū)間上總有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)
已知函數(shù).
(1)若時,求的最大值和最小值,以及取得最大值和最小值時
值;
(2)  若時,方程有兩個不相等的實(shí)數(shù)根,求的取值
范圍及的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將函數(shù)y=f(x)·sin x(x∈R)的圖象向右平移個單位后,再作關(guān)于x軸的對稱變換,得到函數(shù)y=1-2sin2x的圖象,則f(x)可以是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三.解答題:本大題共6個小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
17. (本題滿分10分)
已知函數(shù),
(1)求函數(shù)的最小正周期;
(2)在中,已知為銳角,,,求邊的長.

查看答案和解析>>

同步練習(xí)冊答案