15.采用系統(tǒng)抽樣方法從960人中抽取32人做問卷調(diào)查.為此將他們隨機編號為1,2,3,…,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9,抽到得32人中,編號落入?yún)^(qū)間[1,460]的人做問卷A,編號落入?yún)^(qū)間[461,761]的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷B的人數(shù)為:10.

分析 由題意可得抽到的號碼構(gòu)成以9為首項、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項公式為an=9+(n-1)30=30n-21,由451≤30n-21≤750 求得正整數(shù)n的個數(shù).

解答 解:960÷32=30,故由題意可得抽到的號碼構(gòu)成以9為首項、以30為公差的等差數(shù)列,且此等差數(shù)列的通項公式為an=9+(n-1)30=30n-21.
由461≤30n-21≤761,解得17≤n≤26,且 n∈Z,故做問卷B的人數(shù)為10,
故答案為10.

點評 本題主要考查等差數(shù)列的通項公式,系統(tǒng)抽樣的定義和方法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{4}{x}$(其中x>0).
(Ⅰ)求證:f(x)在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在區(qū)間[2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.當x∈(0,5]時,函數(shù)f(x)=3x2-4x+c的值域為( 。
A.[f(0),f(5)]B.[f(0),f($\frac{2}{3}$)]C.[f($\frac{2}{3}$),f(5)]D.[c,f(5)]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知定義域為R的奇函數(shù)f(x),當x>0時,f(x)=x2-3.
(1)求函數(shù)f(x)在R上的解析式;
(2)求不等式f(x)>2x的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{-{x}^{2}+4x}$的單調(diào)增區(qū)間為( 。
A.[0,2]B.(-∞,2]C.[2,4]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知f(x)=x+$\frac{1}{x}$-2,f(a)=3,則f(-a)=(  )
A.-8B.-7C.-5D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.夏天到了,某中學餐飲中心為了解學生對冷凍降暑食品的飲食習慣,在全校二年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡冷凍不喜歡冷凍合計
女學生602080
男學生101020
合計7030100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“女學生和男學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調(diào)查的北方學生中有5名高二(15)班的學生,其中2名不喜歡冷凍降暑食品.現(xiàn)在從這5名學生中隨機抽取2人,求至多有1人喜歡冷凍降暑食品的概率.
P(χ2≥k)0.1000.0500.010
k2.7063.8416.635
附:(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設等比數(shù)列{an}的前n項和為Sn,且S3=7,S6=63.
(1)求an和Sn;
(2)記數(shù)列{Sn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列四個結(jié)論中正確的個數(shù)是( 。
(1)“x2+x-2>0”是“x>1”的充分不必要條件;
(2)命題:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”;
(3)“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題;
(4)若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案