【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.直線交曲線于兩點.
(1)寫出直線的極坐標方程和曲線的直角坐標方程;
(2)設點的直角坐標為,求點到兩點的距離之積.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A{x| ≥0},B={x|x2﹣2x﹣3<0},C={x|x2﹣(2a+1)x+a(a+1)<0}.
(1)求集合A,B及A∪B;
(2)若C(A∩B),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當t=4,x∈[1,2]時F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當0<a<1,x∈[1,2]時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的對稱軸,過點A(﹣4,a)作圓C的一條切線,切點為B,則|AB|=( )
A.2
B.6
C.4
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)若,討論的單調(diào)性;
(2)若對任意的,都存在使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com