【題目】如圖,在多面體中,四邊形為菱形, , ,且平面平面.

(1)求證: ;

(2)若, ,求二面角的余弦值.

【答案】(1)證明見解析;(2) .

【解析】試題分析】(1)連接,根據(jù)菱形的幾何性質(zhì)有,由面面垂直的性質(zhì)定理可知平面,所以, , ,所以平面,所以.(2) 設,過點的平行線,以為坐標原點建立空間直角坐標系,通過計算平面和平面的法向量來求二面角的余弦值.

試題解析】

(1)證明:

連接,由四邊形為菱形可知

∵平面平面,且交線為,

平面,∴,

,∴,

,∴平面

平面,∴;

(2)解:設,過點的平行線,

由(1)可知兩兩互相垂直,

則可建立如圖所示的空間直角坐標系,

,則,

所以

設平面的法向量為,則,即,

,則為平面的一個法向量,

同理可得為平面的一個法向量.

又二面角的平面角為鈍角,則其余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, , ,且

1)證明:平面平面

2)若,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形 平面, // , , , 的中點

1)求證: ;

2)求證: //平面

3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形的面積為,其中,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )

A.

B.

C. ,(為四面體的高)

D. ,(,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,若函數(shù)恰有一個零點,求的取值范圍;

(2)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

查看答案和解析>>

同步練習冊答案