【題目】各項為正數(shù)的數(shù)列如果滿足:存在實數(shù),對任意正整數(shù)n,恒成立,且存在正整數(shù)n,使得或成立,則稱數(shù)列為“緊密數(shù)列”,k稱為“緊密數(shù)列”的“緊密度”.已知數(shù)列的各項為正數(shù),前n項和為,且對任意正整數(shù)n,(A,B,C為常數(shù))恒成立.
(1)當,,時,
①求數(shù)列的通項公式;
②證明數(shù)列是“緊密度”為3的“緊密數(shù)列”;
(2)當時,已知數(shù)列和數(shù)列都為“緊密數(shù)列”,“緊密度”分別為,,且,,求實數(shù)B的取值范圍.
【答案】(1)①②見解析;(2)
【解析】
(1)利用公式得到是以首項為1,公差為2的等差數(shù)列,得到通項公式;計算恒成立,得到證明.
(2)根據(jù)遞推公式得到是以首項,公比的等比數(shù)列,考慮和兩種情況,計算得到,根據(jù)解得答案.
(1)①當,,時,,
當時,,
相減得:,
整理得:,因為,則,
即有,當時,,則.
則是以首項為1,公差為2的等差數(shù)列,則.
②,得隨著的增大而減小,
則對任意正整數(shù)n,恒成立,且存在,使得.
則數(shù)列是“緊密度”3的“緊密數(shù)列”.
(2)當時,,,相減得:,
若,則上式右端中,與矛盾;
若,則上式左端,與矛盾,則,.
則為常數(shù),即是以首項,公比的等比數(shù)列.
因為數(shù)列為“緊密數(shù)列”,則, 所以,又.
當時,,對任意正整數(shù)恒成立,
且存在正整數(shù),使得,所以數(shù)列的“緊密度”為,
又,即,
此時,隨的增大而減小,
所以,對任意正整數(shù)恒成立,
且當時,,所以數(shù)列的“緊密度”為,
則,與矛盾,不成立;
當時,,對任意正整數(shù)恒成立,
且存在正整數(shù),使得,
則此時的“緊密度”為,即.
而隨著的增大而減小,
則對任意正整數(shù)恒成立,
且當時,,則的“緊密度”,即,
故,即,解得.
綜上所述:實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:
月銷售單價(元/件) | ||||||
月銷售量(萬件) |
(1)若用線性回歸模型擬合與之間的關系,現(xiàn)有甲、乙、丙三位實習員工求得回歸直線方程分別為:,和,其中有且僅有一位實習員工的計算結果是正確的.請結合統(tǒng)計學的相關知識,判斷哪位實習員工的計算結果是正確的,并說明理由;
(2)若用模型擬合與之間的關系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關指數(shù)分別為和,請用說明哪個回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結果回答問題:當月銷售單價為何值時,商品的月銷售額預報值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斐波拉契數(shù)列,指的是這樣一個數(shù)列:1,1,2,3,5,8,13,21,…,在數(shù)學上,斐波拉契數(shù)列{an}定義如下:a1=a2=1,an=an﹣1+an﹣2(n≥3,n∈N),隨著n的增大,越來越逼近黃金分割0.618,故此數(shù)列也稱黃金分割數(shù)列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是( )
A.20厘米B.19厘米C.18厘米D.17厘米
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由和組成的一個平面圖形,其中是的高,,,,將和分別沿著,折起,使得與重合于點B,G為的中點,如圖2.
(1)求證:平面平面;
(2)若,求點C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤上標有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,棋手每擲一次硬幣,棋子向前跳動一次,若擲出正面,棋向前跳一站(從k到),若擲出反面,棋向前跳兩站(從k到),直到棋子跳到第99站(勝利大本營)或跳到第100站(失敗集中營)時,該游戲結束.設棋子跳到第n站概率為.
(1)求,,的值;
(2)求證:,其中,;
(3)求及的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com