精英家教網 > 高中數學 > 題目詳情
如圖,已知PA面ABC,ABBC,若PA=AC=2,AB=1
(1)求證:面PAB面PBC; (2)求二面角A-PC-B的正弦值。
證明:(1)由BC面PAB得:面PAB面PBC (2)過A作AMPB于M,取PC的中點N,連接MN,易證:∠ANM為二面角的平面角,所以
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點。
(1)求證:AC ⊥ BC1
(2)求證:AC// 平面CDB1;
(3)求多面體的體積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點,F是AB的中點.

(1)求證:BE∥平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求三棱錐P-DEF的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

空間點到平面的距離如下定義:過空間一點作平面的垂線,該點和垂足之間的距離即為該點到平面的距離.平面,,兩兩互相垂直,點,點的距離都是,點上的動點,滿足的距離是到到點距離的倍,則點的軌跡上的點到的距離的最小值為
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列幾何體的三視圖中,有且僅有兩個視圖相同的是     (   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在正方體的側面內有一動點到直線與直線的距離相等,則動點 所在的曲線的形狀為…………(     )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,空間四邊形OABC中,=a,=b,=c,點M在OA上,且OM=MA,N為BC中點,則等于                            (    )
A.-a+b+cB.a-b+cC.a+b-cD.a+b-c

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本小題滿分13分)
如圖,已知ABCD是邊長為2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求點E到平面FBC的距離;
(2)求證:平面平面AFC。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
如圖平面,,,,

(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體

查看答案和解析>>

同步練習冊答案