(選修4-1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.
(Ⅰ)證明:DB=DC;
(Ⅱ)設圓的半徑為1,,延長CE交AB于點F,求△BCF外接圓的半徑.
【答案】分析:(I)連接DE交BC于點G,由弦切角定理可得∠ABE=∠BCE,由已知角平分線可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE為⊙O的直徑,Rt△DBE≌Rt△DCE,利用三角形全等的性質即可得到DC=DB.
(II)由(I)可知:DG是BC的垂直平分線,即可得到BG=.設DE的中點為O,連接BO,可得∠BOG=60°.從而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.進而得到Rt△BCF的外接圓的半徑=
解答:(I)證明:連接DE交BC于點G.
由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,
∴∠CBE=∠BCE,BE=CE.
又∵DB⊥BE,∴DE為⊙O的直徑,∠DCE=90°.
∴△DBE≌△DCE,∴DC=DB.
(II)由(I)可知:∠CDE=∠BDE,DB=DC.
故DG是BC的垂直平分線,∴BG=
設DE的中點為O,連接BO,則∠BOG=60°.
從而∠ABE=∠BCE=∠CBE=30°.
∴CF⊥BF.
∴Rt△BCF的外接圓的半徑=
點評:本題綜合考查了圓的性質、弦切角定理、等邊三角形的性質、三角形全等、三角形的外接圓的半徑等知識,需要較強的推理能力、分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
已知⊙O的弦AB長為4,將線段AB延長到點P,使BP=2;過點P作直線PC切⊙O于點C;
(1)求線段PC的長;
(2)作⊙O的弦CD交AB于點Q(CQ<DQ),且Q為AB中點,又CD=5,求線段CQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•?诙#┻x修4-1:幾何證明選講
切線AB與圓切于點B,圓內有一點C滿足AB=AC,∠CAB的平分線AE交圓于D,E,延長EC交圓于F,延長DC交圓于G,連接FG.
(Ⅰ)證明:AC∥FG;
(Ⅱ)求證:EC=EG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內作答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內圓⊙O1相切,切點為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
如圖,已知PA與⊙O相切于點A,PBC為⊙O的割線,弦CD∥AP,AD與BC相交于點E,F(xiàn)為CE上一點,且DE2=EF•EC
(I)求證:A、P、D、F四點共圓
(II)若AE=6,DE=EB=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南通一模)選修4-1:幾何證明選講
如圖,△ABC是⊙O的內接三角形,若AD是△ABC的高,AE是⊙O的直徑,F(xiàn)是
BC
的中點.求證:
(1)AB•AC=AE•AD;
(2)∠FAE=∠FAD.

查看答案和解析>>

同步練習冊答案