【題目】設(shè){an}是公比為 q的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設(shè){bn}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),比較Sn與bn的大小,并說(shuō)明理由.
【答案】(Ⅰ)q=1或-;(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)由題設(shè)2a3=a1+a2,即2a1q2=a1+a1q,
∵a1≠0,∴2q2-q-1=0,
∴q=1或-.
(Ⅱ)若q=1,則Sn=2n+=.bn=n+1.
當(dāng)n≥2時(shí),Sn-bn=Sn-1=-( n+1)=>0,故Sn>bn.
若q=-,則Sn=2n+(-)=.
bn=2+(n-1)( -)=
當(dāng)n≥2時(shí),Sn-bn=Sn-1=,
故對(duì)于n∈N+,當(dāng)2≤n≤9時(shí),Sn>bn;當(dāng)n=10時(shí),Sn=bn;當(dāng)n≥11時(shí),Sn<bn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】謝爾賓斯基三角形(Sierpinskitriangle)是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,如圖先作一個(gè)三角形,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的面積,那么灰色三角形為剩下的面積(我們稱(chēng)灰色部分為謝爾賓斯基三角形).若通過(guò)該種方法把一個(gè)三角形挖3次,然后在原三角形內(nèi)部隨機(jī)取一點(diǎn),則該點(diǎn)取自謝爾賓斯基三角形的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且是與2的等差中項(xiàng).?dāng)?shù)列中,,點(diǎn)在直線上.
(1)求和的值;
(2)求數(shù)列,的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,為的中點(diǎn),點(diǎn)在側(cè)棱上,平面.
(1)證明:是的中點(diǎn);
(2)設(shè),四邊形為正方形,四邊形為矩形,且異面直線與所成的角為30°,求兩面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在軸上,且經(jīng)過(guò)點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與圓相交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓上的兩點(diǎn).
(1)求橢圓的離心率;
(2)已知直線過(guò)點(diǎn),且與橢圓交于另一點(diǎn)(不同于點(diǎn)),若以為直徑的圓經(jīng)過(guò)點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以橢圓的中心O為圓心,以為半徑的圓稱(chēng)為該橢圓的“伴隨”.已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓C及其“伴隨”的方程;
(2)過(guò)點(diǎn)作“伴隨”的切線l交橢圓C于A,B兩點(diǎn),記為坐標(biāo)原點(diǎn))的面積為,將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,是的中點(diǎn),,.
(1)求證:平面;
(2)若,點(diǎn)在側(cè)棱上,且,二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com