6.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$cosA=-\frac{3}{5}$,$sinC=\frac{1}{2}$,c=1,則△ABC的面積為$\frac{8\sqrt{3}-6}{25}$.

分析 利用正弦定理、和差公式、三角形面積計(jì)算公式即可得出.

解答 解:∵2R=$\frac{c}{sinC}$=2,則$a=2RsinA=2×\frac{4}{5}=\frac{8}{5}$,
又sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{4}{5}×\frac{{\sqrt{3}}}{2}+({-\frac{3}{5}})×\frac{1}{2}=\frac{{4\sqrt{3}-3}}{10}$,
∴$S=\frac{1}{2}acsinB=\frac{1}{2}×\frac{8}{5}×1×\frac{{4\sqrt{3}-3}}{10}=\frac{{8\sqrt{3}-6}}{25}$.
故答案為:$\frac{8\sqrt{3}-6}{25}$.

點(diǎn)評(píng) 本題考查了正弦定理、和差公式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知a,b為實(shí)數(shù),函數(shù)f(x)=x2+ax+1,且函數(shù)y=f(x+1)是偶函數(shù),函數(shù)g(x)=-b•f(f(x+1))+(3b-1)•f(x+1)+2在區(qū)間(-∞,-2]上的減函數(shù),且在區(qū)間(-2,0)上是增函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)求實(shí)數(shù)b的值;
(3)設(shè)h(x)=f(x+1)-2qx+1+2q,問(wèn)是否存在實(shí)數(shù)q,使得h(x)在區(qū)間[0,2]上有最小值為-2?若存在,求出q的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在x∈(0,7π)內(nèi)取得一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),f(x)有最大值3,當(dāng)x=6π時(shí),f(x)有最小值-3.
(1)求函數(shù)f(x)的解析式;
(2)是否存在實(shí)數(shù)m滿足Asin($ω\sqrt{-{m^2}+2m+3}$+φ)>Asin(ω$\sqrt{-{m^2}+4}$+φ)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.△ABC的頂點(diǎn)A(5,0),B(-5,0),△ABC的周長(zhǎng)為22,則頂點(diǎn)C的軌跡方程是( 。
A.$\frac{x^2}{36}+\frac{y^2}{11}=1$B.$\frac{x^2}{25}+\frac{y^2}{11}=1$
C.$\frac{x^2}{36}+\frac{y^2}{11}=1({y≠0})$D.$\frac{x^2}{9}+\frac{y^2}{16}=1({y≠0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法正確的是( 。
A.若p∧q為假命題,則p、q均為假命題
B.命題“若x2=1,則x=1”為真命題
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.命題“存在一個(gè)實(shí)數(shù)x,使不等式x2-3x+6<0成立”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若點(diǎn)P是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的漸近線上任意一點(diǎn),下列正確的是( 。
A.存在過(guò)點(diǎn)P的直線與雙曲線相切
B.不存在過(guò)點(diǎn)P的直線與雙曲線相切
C.至少存在一條過(guò)點(diǎn)P的直線與該雙曲線沒(méi)有交點(diǎn)
D.存在唯一過(guò)點(diǎn)P的直線與該雙曲線沒(méi)有交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.以原點(diǎn)為頂點(diǎn),x軸為對(duì)稱軸的拋物線的焦點(diǎn)在直線2x-4y-11=0上,則此拋物線的方程是( 。
A.y2=11xB.y2=-11xC.y2=22xD.y2=-22x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.等差數(shù)列{an}中,a2=15,a4=9,則S5=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,AB=$\sqrt{3}$,E1為A1B1中點(diǎn).
(1)證明:B1D∥平面AD1E1;
(2)求平面ACD1和平面CDD1C1所成角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案