9.若函數(shù)f(x)=sin2ωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上是減函數(shù).則實(shí)數(shù)ω的取值范圍是[-$\frac{3}{2}$,0).

分析 由題意可得ω<0,且2ω•$\frac{π}{6}$≥-$\frac{π}{2}$,2ω•(-$\frac{π}{6}$)≤$\frac{π}{2}$,從而求得的范圍.

解答 解:∵函數(shù)f(x)=sin2ωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上是減函數(shù),可得ω<0,
且2ω•$\frac{π}{6}$≥-$\frac{π}{2}$,2ω•(-$\frac{π}{6}$)≤$\frac{π}{2}$,由此求得ω≥-$\frac{3}{2}$,即實(shí)數(shù)ω的取值范圍為[-$\frac{3}{2}$,0),
故答案為:[-$\frac{3}{2}$,0).

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在實(shí)數(shù)a,b,c,d,滿足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,則abcd的取值范圍(16,24).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,曲線y=x2-4x+3與兩坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)判斷直線ax-y-3a+1=0與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{{a^x}-1}}{{{a^x}+1}}$(a>0,a≠1)
(1)判斷函數(shù)的奇偶性,并證明;
(2)求該函數(shù)的值域;
(3)判斷f(x)在R上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),若f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位所得的圖象與f(x)的圖象右平移$\frac{π}{6}$個(gè)單位所得的圖象重合,則ω的最小值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)據(jù)9.8,9.9,10,10.1,10.2的平均數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a=log0.32,b=log32,c=20.3,則這三個(gè)數(shù)的大小關(guān)系是( 。
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$是奇函數(shù)(a∈R).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)y=f(x)的值域;
(3)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案