定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,
f(x)= (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍.
解:(1)設(shè)x∈[0,1],則-x∈[-1,0],
f(-x)==4x-a·2x
∵f(-x)=-f(x),
∴f(x)=a·2x-4x,x∈[0,1].
令t=2x,t∈[1,2],
∴g(t)=a·t-t2=-(t-)2,
當(dāng)≤1,即a≤2時,g(t)max=g(1)=a-1;
當(dāng)1<<2,即2<a<4時,g(t)max=g()=
當(dāng)≥2,即a≥4時,g(t)max=g(2)=2a-4.
綜上,當(dāng)a≤2時,f(x)的最大值為a-1;
當(dāng)2<a<4時,f(x)的最大值為;
當(dāng)a≥4時,f(x)的最大值為2a-4.
(2)∵函數(shù)f(x)在[0,1]上是增函數(shù),
∴f′(x)=aln2×2x-ln4×4x=2xln2·(a-2×2x)≥0,∴a-2×2x≥0恒成立,
∴a≥2×2x.∵2x∈[1,2],∴a≥4.
故a的取值范圍是[4,+∞).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055314457301.png" style="vertical-align:middle;" />,關(guān)于的不等式的解集為,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2≤0},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,,,則下列等式一定成立的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變化時,函數(shù)b=g(a)的圖象可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),且f(2)=1,則f(x)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·太原模擬]函數(shù)y=()x2+2x-1的值域是(  )
A.(-∞,4)B.(0,+∞)
C.(0,4]D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)均為正數(shù),且,,.則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案