【題目】已知函數.
(1)當時,求的定義域;
(2)試判斷函數在區(qū)間上的單調性,并給出證明;
(3)若在區(qū)間上恒取正值,求實數的取值范圍.
【答案】(1);(2)函數在區(qū)間上是減函數,證明見解析;(3)
【解析】
(1)將代入得到的解析式,根據解析式要有意義,列出不等式,求解即可得到的定義域;
(2)利用函數單調性的定義,令,先判斷出,再根據對數的單調性,判斷出,從而證明結結論;
(3)將在上恒取正值,等價為在上恒成立,轉化為,利用的單調性即可求出的最小值,從而列出不等式,求解即可得到的取值范圍.
(1)當時,,
,即,
,即,
∴函數的定義域為;
(2)函數在區(qū)間上是減函數.
證明:任取,且,
,
令,
,
,,
,即,
,
,
∴,
∴在上是減函數;
(3)由(2)可知,在上是減函數,
∴在上是單調遞減函數,
∴在上的最小值為,
∵在上恒取正值,即在上恒成立,
,
,即,
,
,
,
故的取值范圍為.
科目:高中數學 來源: 題型:
【題目】某企業(yè)生產甲、乙兩種產品,銷售利潤分別為2千元/件、1千元/件.甲、乙兩種產品都需要在兩種設備上加工,生產一件甲產品需用設備2小時, 設備6小時;生產一件乙產品需用設備3小時, 設備1小時. 兩種設備每月可使用時間數分別為480小時、960小時,若生產的產品都能及時售出,則該企業(yè)每月利潤的最大值為( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,用簡單隨機抽樣方法調查了125人,其中女性70人,男性55人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運動.
(1)根據以上數據建立一個列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.025的前提下,認為性別與休閑方式有關系?
(3)在休閑方式為看電視的人中按分層抽樣方法抽取6人參加某機構組織的健康講座,講座結束后再從這6人中抽取2人作反饋交流,求參加交流的恰好為2位女性的概率.
附:
P( ) | 0.05 | 0.025 | 0.010 |
k | 3.841 | 5.024 | 6.635 |
休閑方式 性別 | 看電視 | 運動 | 合計 |
女 | |||
男 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數分層抽樣,隨機抽查了100人,將調查情況進行整理后制成下表:
學校 | ||||
抽查人數 | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動中參與的人數 | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數與被抽查人數的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.
(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數;
(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 是等邊三角形, 為的中點,四邊形為直角梯形, .
(1)求證:平面平面;
(2)求四棱錐的體積;
(3)在棱上是否存在點,使得平面?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某房地產開發(fā)商投資81萬元建一座寫字樓,第一年裝修維護費為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元.
(1)若扣除投資和各種裝修維護費,則從第幾年開始獲取純利潤?
(2)若干年后開發(fā)商為了投資其他項目,有兩種處理方案:①純利潤總和最大時,以10萬元出售該樓;②年平均利潤最大時以46萬元出售該樓,問哪種方案更優(yōu)?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com