精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)當時,求的定義域;

2)試判斷函數在區(qū)間上的單調性,并給出證明;

3)若在區(qū)間上恒取正值,求實數的取值范圍.

【答案】1;(2)函數在區(qū)間上是減函數,證明見解析;(3

【解析】

1)將代入得到的解析式,根據解析式要有意義,列出不等式,求解即可得到的定義域;
2)利用函數單調性的定義,令,先判斷出,再根據對數的單調性,判斷出,從而證明結結論;
3)將上恒取正值,等價為上恒成立,轉化為,利用的單調性即可求出的最小值,從而列出不等式,求解即可得到的取值范圍.

1)當時,,
,即,
,即
∴函數的定義域為
2)函數在區(qū)間上是減函數.
證明:任取,且,

,

,
,
,即,
,
,
,
上是減函數;
3)由(2)可知,上是減函數,
上是單調遞減函數,
上的最小值為
上恒取正值,即上恒成立,
,
,即
,

,
的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】平行六面體中,以頂點為端點的三條棱長都為1,且兩兩夾角為.

(1)求的長;

(2)求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產甲、乙兩種產品,銷售利潤分別為2千元/件、1千元/件.甲、乙兩種產品都需要在兩種設備上加工,生產一件甲產品需用設備2小時, 設備6小時;生產一件乙產品需用設備3小時, 設備1小時. 兩種設備每月可使用時間數分別為480小時、960小時,若生產的產品都能及時售出,則該企業(yè)每月利潤的最大值為( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

(1)討論的單調性;

(2)若恒成立,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在對人們的休閑方式的一次調查中,用簡單隨機抽樣方法調查了125人,其中女性70人,男性55.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運動.

1)根據以上數據建立一個列聯(lián)表;

2)能否在犯錯誤的概率不超過0.025的前提下,認為性別與休閑方式有關系?

3)在休閑方式為看電視的人中按分層抽樣方法抽取6人參加某機構組織的健康講座,講座結束后再從這6人中抽取2人作反饋交流,求參加交流的恰好為2位女性的概率.

附:

P

0.05

0.025

0.010

k

3.841

5.024

6.635

休閑方式

性別

看電視

運動

合計

合計

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ABAD,ACCD,∠ABC=60°,PAABBC,EPC的中點.

(1)證明:AE⊥平面PCD;

(2)求二面角APDC的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數分層抽樣,隨機抽查了100人,將調查情況進行整理后制成下表:

學校

抽查人數

50

15

10

25

“創(chuàng)城”活動中參與的人數

40

10

9

15

(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數與被抽查人數的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數;

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 是等邊三角形, 的中點,四邊形為直角梯形, .

1)求證:平面平面;

2)求四棱錐的體積;

3)在棱上是否存在點,使得平面?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某房地產開發(fā)商投資81萬元建一座寫字樓,第一年裝修維護費為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元.

1)若扣除投資和各種裝修維護費,則從第幾年開始獲取純利潤?

2)若干年后開發(fā)商為了投資其他項目,有兩種處理方案:①純利潤總和最大時,以10萬元出售該樓;②年平均利潤最大時以46萬元出售該樓,問哪種方案更優(yōu)?

查看答案和解析>>

同步練習冊答案