【題目】如圖所示,在三棱錐中,平面,,分別為線段上的點(diǎn),且.
(I)證明:平面;
(II)求二面角的余弦值.
【答案】(I)證明見解析;(II).
【解析】
(I)根據(jù)平面并結(jié)合的形狀,利用線面垂直的判定定理進(jìn)行證明;
(II)建立空間直角坐標(biāo)系,求解出平面的一個法向量,寫出平面的一個法向量,計(jì)算出法向量夾角的余弦并結(jié)合圖形判斷二面角是鈍角還是銳角,從而計(jì)算出二面角的余弦值.
(I)
證明:因?yàn)?/span>平面,平面,
所以.
由得為等腰直角三角形,
故,
又,且面,面,
故平面.
(II)
如圖,以點(diǎn)為原點(diǎn),分別以的方向分別為軸,軸,軸的正方向,
建立直角坐標(biāo)系,
,
設(shè)平面的法向量為,則,
即,
令,則,故可取.
由(I)可知平面,故平面的法向量可取為,
即,
則,
又二面角為銳二面角,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過拋物線y2=6x的焦點(diǎn)F,且與拋物線相交于A,B兩點(diǎn).
(1)若直線l的傾斜角為60°,求|AB|的值;
(2)若|AB|=9,求線段AB的中點(diǎn)M到準(zhǔn)線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD的體積為1,O為其中心,正四面體EFGH與正四面體ABCD關(guān)于點(diǎn)O對稱,則這兩個正四面體的公共部分的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某公司舉行的一次真假游戲的有獎競猜中,設(shè)置了“科技”和“生活”這兩類試題,規(guī)定每位職工最多競猜3次,每次競猜的結(jié)果相互獨(dú)立.猜中一道“科技”類試題得4分,猜中一道“生活”類試題得2分,兩類試題猜不中的都得0分.將職工得分逐次累加并用X表示,如果X的值不低于4分就認(rèn)為通過游戲的競猜,立即停止競猜,否則繼續(xù)競猜,直到競猜完3次為止.競猜的方案有以下兩種:方案1:先猜一道“科技”類試題,然后再連猜兩道“生活”類試題;
方案2:連猜三道“生活”類試題.
設(shè)職工甲猜中一道“科技”類試題的概率為0.5,猜中一道“生活”類試題的概率為0.6.
(1)你認(rèn)為職工甲選擇哪種方案通過競猜的可能性大?并說明理由.
(2)職工甲選擇哪一種方案所得平均分高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的焦距與短軸長相等,橢圓上一點(diǎn)到兩焦點(diǎn)距離之差的最大值為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓上異于左右頂點(diǎn),的任意一點(diǎn),過原點(diǎn)作的垂線交的延長線于點(diǎn),求的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個各個面上均涂有顏色的正方體鋸成個同樣大小的小正方體,從這些小正方體中任意取兩個,這兩個都恰是兩面涂色的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com