11.函數(shù)y=x2+2(x∈R)的最小值是2.

分析 函數(shù)y=x2+2(x∈R)的圖象是開口朝上,且以y軸為對(duì)稱軸的拋物線,當(dāng)x=0時(shí),函數(shù)取最小值.

解答 解:函數(shù)y=x2+2(x∈R)的圖象是開口朝上,且以y軸為對(duì)稱軸的拋物線,
當(dāng)x=0時(shí),函數(shù)取最小值2,
故答案為:2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax-a,g(x)=$\frac{1}{3}$x3-2x2+3x+$\frac{16}{3}$.
(1)討論f(x)零點(diǎn)的個(gè)數(shù);
(2)若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)≥g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=Asin(2x-φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)成中心對(duì)稱,則|φ|最小的φ的值為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(2x-1)=3x2+1,則f(x)的表達(dá)式為$f(x)=\frac{3}{4}{x^2}+\frac{3}{2}x+\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}滿足:an+2=qan(q≠1,n∈N*),a1=1,a2=3,且a2+a3,a3+a4,a4+a5成等差數(shù)列.
(Ⅰ)求q的值,并求a3,a5的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=$\frac{lo{g}_{3}{a}_{2n}}{{a}_{2n-1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{2x}{2x-1}$(x≠1),數(shù)列{an}的通項(xiàng)公式為an=f(${\frac{n}{2018}}$)(n∈N*),則此數(shù)列前2018項(xiàng)的和為2020.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求證:數(shù)列{an+3}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)在數(shù)列{Sn}中取出若干項(xiàng)S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若數(shù)列{nk}是等差數(shù)列,試判斷數(shù)列{S${\;}_{{n}_{k}}$}是否為等差數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{x+4}{x}$與g(x)=|x2-6x|的定義域?yàn)閇1,4].
(1)求這兩個(gè)函數(shù)的值域并作處這兩個(gè)函數(shù)的圖象;
(2)若函數(shù)g(x)的圖象與直線y=k僅有一個(gè)交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{x}$+alnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[$\frac{1}{2}$,1]時(shí),f(x)的最小值是0,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案