如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4.
(Ⅰ)設(shè)M是PC上一點(diǎn),證明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中點(diǎn),求棱錐P-DMB的體積.
(Ⅰ)詳見解析;(Ⅱ).
解析試題分析:(Ⅰ)要證明平面平面,只需證明一個(gè)平面過另一個(gè)平面的垂線,因?yàn)镸是PC上一點(diǎn),不確定,故證明平面,顯然易證;(Ⅱ)求棱錐P-DMB的體積,直接求,底面面積及高都不好求,但注意到棱錐P-DMB是棱錐P-DCB除去一個(gè)小棱錐M-DCB而得到,而這兩個(gè)棱錐的體積都容易求,值得注意的是,當(dāng)一個(gè)幾何體的體積不好求時(shí),可進(jìn)行轉(zhuǎn)化成其它幾何體來求.
試題解析:(I)證明:在中,由于,所以.故。又平面平面平面,所以平面,又平面,故平面平面;
(II)過作于是的中點(diǎn),,.
考點(diǎn):本小題考查面面垂直的判定、線面垂直的判定,面面垂直的性質(zhì)定理應(yīng)用;,以及棱錐的體積公式,考查學(xué)生的化歸與轉(zhuǎn)化能力以及空間想象能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,矩形的對角線交于點(diǎn)G,AD⊥平面,,,為上的點(diǎn),且BF⊥平面ACE
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是矩形中邊上的點(diǎn),為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.
⑴求證:平面平面;
⑵求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.
(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:三棱柱中,,,側(cè)棱底面,為的中點(diǎn),為邊上的動(dòng)點(diǎn)。
(1)若為中點(diǎn),求證:平面
(2)若,求四棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD的三視圖和直觀圖如下:
(1)求四棱錐P-ABCD的體積;
(2) 若E是側(cè)棱PC上的動(dòng)點(diǎn),是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.
(3) 若F是側(cè)棱PA上的動(dòng)點(diǎn),證明:不論點(diǎn)F在何位置,都不可能有BF⊥平面PAD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分1 2分)
如圖,四邊形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABCD平面EFDC,設(shè)AD中點(diǎn)為P.
( I )當(dāng)E為BC中點(diǎn)時(shí),求證:CP//平面ABEF
(Ⅱ)設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐A-CDF的體積有最大值?并求出這個(gè)最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com