定點(0,2)到曲線y=|x2-1|上點的最短距離為(    )

A.              B.1              C.2                D.

解析:因為點(0,1)在曲線y=|x2-1|上,

∴(0,1)到定點(0,2)的距離為1.

答案:B


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•許昌一模)設點M(x,y)到直線x=4的距離與它到定點(2,0)的距離之比為
2
,并記點M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(2,0)作直線l與曲線C相交于A、B兩點,問C上是否存在點P,使得
OP
=
OA
+
OB
成立?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•松江區(qū)三模)在平面直角坐標系中,O為坐標原點.已知曲線C上任意一點P(x,y)(其中x≥0)到定點F(1,0)的距離比它到y(tǒng)軸的距離大1,直線l與曲線C相交于不同的A,B兩點.
(1)求曲線C的軌跡方程;
(2)若直線l經(jīng)過點F(1,0),求
OA
OB
的值;
(3)若
OA
OB
=-4
,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)二模)和平面解析幾何的觀點相同,在空間中,空間曲面可以看作是適合某種條件的動點的軌跡.一般來說,在空間直角坐標系O-xyz中,空間曲面的方程是一個三元方程F(x,y,z)=0.
(Ⅰ)在直角坐標系O-xyz中,求到定點M0(0,2,-1)的距離為3的動點P的軌跡(球面)方程;
(Ⅱ)如圖,設空間有一定點F到一定平面α的距離為常數(shù)p>0,即|FM|=2,定義曲面C為到定點F與到定平面α的距離相等(|PF|=|PN|)的動點P的軌跡,試建立適當?shù)目臻g直角坐標系O-xyz,求曲面C的方程;  
(Ⅲ)請類比平面解析幾何中對二次曲線的研究,討論曲面C的幾何性質(zhì).并在圖中通過畫出曲面C與各坐標平面的交線(如果存在)或與坐標平面平行的平面的交線(如果必要)表示曲面C的大致圖形.畫交線時,請用虛線表示被曲面C自身遮擋部分.

查看答案和解析>>

科目:高中數(shù)學 來源:高三數(shù)學教學與測試 題型:013

定點P(0,2)到曲線y=上點的最短距離為

[  ]

A.
B.1
C.2
D.

查看答案和解析>>

同步練習冊答案