【題目】研究變量得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

①殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越窄,則回歸方程的預(yù)報(bào)精確度越高;

②用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越小說(shuō)明擬合效果越好;

③在回歸直線方程中,當(dāng)變量每增加1個(gè)單位時(shí),變量就增加2個(gè)單位

④若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng)

以上正確說(shuō)法的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】B

【解析】

可以用來(lái)衡量模擬效果好壞的幾個(gè)量分別是相關(guān)系數(shù),殘差平方和和相關(guān)系數(shù),只有殘差平方和越小越好,其它的都是越大越好.

對(duì)于①,殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越窄,則回歸方程的預(yù)報(bào)精確度越高;故①正確;

對(duì)于②,用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越大說(shuō)明擬合效果越好,故②不正確;

對(duì)于③,在回歸直線方程中,當(dāng)變量每增加1個(gè)單位時(shí),變量就增加2個(gè)單位是正確的;故③正確;

對(duì)于④,說(shuō)明變量呈負(fù)相關(guān),接近于1說(shuō)明變量相關(guān)性很強(qiáng),故④正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面推理過(guò)程中使用了類比推理方法,其中推理正確的是( )

A. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條直線,若,則

B. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條向量,若,則

C. 在平面內(nèi),若兩個(gè)正三角形的邊長(zhǎng)的比為,則它們的面積比為.類比推出:在空間中,若兩個(gè)正四面體的棱長(zhǎng)的比為,則它們的體積比為

D. ,則復(fù)數(shù).類比推理:,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這200個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率.

3)在樣本數(shù)據(jù)中,有40位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).(把表簡(jiǎn)要畫(huà)在答題卡上)

男生

女生

總計(jì)

每周平均體育運(yùn)動(dòng)時(shí)間不超過(guò)4小時(shí)

每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)

總計(jì)

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若,的兩個(gè)極值點(diǎn),且,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)焦點(diǎn)作垂直于軸的直線,與拋物線相交于,兩點(diǎn)的準(zhǔn)線上一點(diǎn),的面積為4.

(1)求拋物線的標(biāo)準(zhǔn)方程.

(2)設(shè)若點(diǎn)是拋物線上的任一動(dòng)點(diǎn),則是否存在垂直于軸的定直線被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線方程和弦長(zhǎng)如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】洛薩科拉茨Collatz,是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,對(duì)科拉茨猜想,目前誰(shuí)也不能證明,更不能否定現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)首項(xiàng)按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項(xiàng)為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】洛薩科拉茨Collatz,是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,對(duì)科拉茨猜想,目前誰(shuí)也不能證明,更不能否定現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)首項(xiàng)按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項(xiàng)為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩人玩摸球游戲,每?jī)删譃橐惠,每局游戲的?guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結(jié)束該局.

(1)若在一局中甲先摸,求甲在該局獲勝的概率;

(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是直角梯形,,平面ABCD,

證明:平面平面PAC;

2,求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案