【題目】某企業(yè)生產(chǎn)某種電子設備的年固定成本為500(萬元),每生產(chǎn)x臺,需另投入成本(萬元),當年產(chǎn)量不足60臺時,(萬元);當年產(chǎn)量不小于60臺時,,若每臺售價為100(萬元)時,該廠當年生產(chǎn)的該電子設備能全部銷售完.
(1)寫出年利潤y(萬元)關于年產(chǎn)量x(臺)的函數(shù)關系式;
(2)當年產(chǎn)量為多少臺時,該企業(yè)在這一電子設備的生產(chǎn)中所獲利潤最大?
【答案】(1);(2)年產(chǎn)量為70臺時,該企業(yè)的設備的生產(chǎn)中所獲得利潤最大為1300(萬元)
【解析】
(1)根據(jù)年利潤的定義,銷售收入減固定成本為500(萬元)減每生產(chǎn)x臺,投入成本(萬元)求解。
(2)根據(jù)(1)的結果,求每一段的最大值,取最大的為分段函數(shù)的最大值.
(1)當時,有
當時,有,
∴;
(2)由(1)可得:當時,有,
∴時,y取得最大值為1100(萬元),
當時,有(當且僅當時取等號)
即當時y取得最大值為1300(萬元)
綜上可得:年產(chǎn)量為70臺時,該企業(yè)的設備的生產(chǎn)中所獲得利潤最大為1300(萬元).
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為(其中為常數(shù)).
(1)若曲線N與曲線M只有一個公共點,求的取值范圍;
(2)當時,求曲線M上的點與曲線N上的點之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設是由 個實數(shù)組成的行列的數(shù)表,其中 表示位于第行第列的實數(shù),且.
定義 為第s行與第t行的積. 若對于任意(),都有,則稱數(shù)表為完美數(shù)表.
(Ⅰ)當時,試寫出一個符合條件的完美數(shù)表;
(Ⅱ)證明:不存在10行10列的完美數(shù)表;
(Ⅲ)設為行列的完美數(shù)表,且對于任意的和,都有,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電子公司新開發(fā)一電子產(chǎn)品,該電子產(chǎn)品的一個系統(tǒng)G有3個電子元件組成,各個電子元件能否正常工作的概率均為,且每個電子元件能否正常工作相互獨立.若系統(tǒng)C中有超過一半的電子元件正常工作,則G可以正常工作,否則就需要維修,且維修所需費用為500元.
(1)求系統(tǒng)不需要維修的概率;
(2)該電子產(chǎn)品共由3個系統(tǒng)G組成,設E為電子產(chǎn)品需要維修的系統(tǒng)所需的費用,求的分布列與期望;
(3)為提高G系統(tǒng)正常工作概率,在系統(tǒng)內增加兩個功能完全一樣的其他品牌的電子元件,每個新元件正常工作的概率均為,且新增元件后有超過一半的電子元件正常工作,則C可以正常工作,問:滿足什么條件時,可以提高整個G系統(tǒng)的正常工作概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.
(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?
(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com