某學校為了研究學情,從高三年級中抽取了20名學生三次測試的數學成績和物理成績,計算出了他們三次成績的平均名次如下表:
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
數 學 | 1.3 | 12.3 | 25.7 | 36.7 | 50.3 | 67.7 | 49.0 | 52.0 | 40.0 | 34.3 |
物 理 | 2.3 | 9.7 | 31.0 | 22.3 | 40.0 | 58.0 | 39.0 | 60.7 | 63.3 | 42.7 |
學生序號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數 學 | 78.3 | 50.0 | 65.7 | 66.3 | 68.0 | 95.0 | 90.7 | 87.7 | 103.7 | 86.7 |
物 理 | 49.7 | 46.7 | 83.3 | 59.7 | 50.0 | 101.3 | 76.7 | 86.0 | 99.7 | 99.0 |
學校規(guī)定平均名次小于或等于40.0者為優(yōu)秀,大于40.0者為不優(yōu)秀.
(1)對名次優(yōu)秀者賦分2,對名次不優(yōu)秀者賦分1,從這20名學生中隨機抽取2名,用ξ表示這兩名學生數學科得分的和,求ξ的分布列和數學期望;
(2)根據這次抽查數據,是否在犯錯誤的概率不超過0.025的前提下認為物理成績優(yōu)秀與否和數學成績優(yōu)秀與否有關系?(下面的臨界值表和公式可供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K
2=
,其中n=a+b+c+d)