【題目】已知數(shù)列{an}滿足 ,且{a2n1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則5﹣6a10=

【答案】
【解析】解:由于{a2n1}是遞減數(shù)列,因此a2n+1﹣a2n1<0,于是(a2n+1﹣a2n)+(a2n﹣a2n1)<0 ①. 因為 ,所以|a2n+1﹣a2n|<|a2n﹣a2n1|②.
由①②知a2n﹣a2n1<0.因為{a2n}是遞增數(shù)列,
所以a2n+2﹣a2n>0,a2n+2﹣a2n+1+a2n+1﹣a2n>0,|a2n+2﹣a2n+1|<|a2n+1﹣a2n|,所以a2n+1﹣a2n>0.
于是a10=a1+(a2﹣a1)+(a3﹣a2)+…+(a10﹣a9)=1﹣ ﹣… =1+ =
所以5﹣6a10= =
所以答案是:
【考點精析】解答此題的關鍵在于理解數(shù)列的通項公式的相關知識,掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調性;
(2)若f(x)≤e2xx∈R恒成立,求實數(shù)m的取值范圍;
(3)設x1 , x2(x1≠x2)是函數(shù)f(x)的兩個兩點,求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為 的正方形,AA1=3,E是AA1的中點,過C1作C1F⊥平面BDE與平面ABB1A1交于點F,則CF與平面ABCD所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p: ,命題q: ,則下列命題為真命題的是(
A.p∧q
B.(¬p)∧(﹣q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1)﹣nx在點(1,f(1))處的切線與y軸垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調區(qū)間;
(Ⅱ)設g(x)=﹣x2+2x,確定非負實數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市隨機抽取部分企業(yè)調查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方圖中x的值;
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若共抽取企業(yè)1200個,試估計有多少企業(yè)可以申請政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選4個,這4個企業(yè)年上繳稅收少于20萬元的個數(shù)記為X,求X的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的最小值為m.
(1)求m的值;
(2)若a,b,c是正實數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca﹣3abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn , yn , 如果點數(shù)滿足xn ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(I)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案