設(shè)a>0,函數(shù),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍為   
【答案】分析:先對(duì)函數(shù)g(x)求導(dǎo)判斷出函數(shù)g(x)的單調(diào)性并求其最大值,然后對(duì)函數(shù)f(x)進(jìn)行求導(dǎo)判斷單調(diào)性求其最小值,最后令函數(shù)f(x)的最小值大于等于函數(shù)g(x)的最大值即可.
解答:解:∵g(x)=x-lnx∴g'(x)=1-,x∈[1,e],g'(x)≥0 函數(shù)g(x)單調(diào)遞增
g(x)的最大值為g(e)=e-1
∵f(x)=x+∴f'(x)=,令f'(x)=0∵a>0∴x=a
當(dāng)0<a<1 f(x)在[1,e]上單調(diào)增 f(1)最小=1+a2≥e-1∴1>a≥
當(dāng)1≤a≤e 列表可知 f(a)最小=2a≥e-1 恒成立
當(dāng)a>e時(shí) f(x)在[1,e]上單調(diào)減 f(e)最小=≥e-1 恒成立
綜上a≥
故答案為:a≥
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市東臺(tái)市唐洋中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)a>0,函數(shù),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市六合高級(jí)中學(xué)高三(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)a>0,函數(shù),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則a的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省四星高中高三數(shù)學(xué)小題訓(xùn)練(12)(解析版) 題型:解答題

設(shè)a>0,函數(shù),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則a的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市啟東中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)a>0,函數(shù),若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案