5.若$\frac{a}{1-i}=\frac{1+i}{i}$(i為虛數(shù)單位),則復數(shù)a的值為-2i.

分析 直接利用復數(shù)的代數(shù)形式混合運算化簡求解即可.

解答 解:$\frac{a}{1-i}=\frac{1+i}{i}$
可得a=$\frac{(1+i)(1-i)}{i}$=$\frac{2}{i}$=-2i.
故答案為:-2i.

點評 本題考查復數(shù)的代數(shù)形式的混合運算,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設命題p:?x∈R,x2-4x+2m≥0(其中m為常數(shù))則“m≥1”是“命題p為真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(1-2m)>0,則實數(shù)m取值范圍為( 。
A.m>0B.0<m<$\frac{3}{2}$C.-1<m<3D.-<m<$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知M、N分別為四面體ABCD的面BCD與面ACD的重心,且G為AM上一點,且GM:GA=1:3,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.己知a>0,b>0,c>1且a+b=1,則($\frac{{a}^{2}+1}{ab}$-2)•c+$\frac{\sqrt{2}}{c-1}$的最小值為$4+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.集合A={1,a},B={1,2,3},則“a=3”是“A⊆B”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,稱這些函數(shù)為同族函數(shù).那么,函數(shù)的解析式為y=x2,值域為{4,9}的同族函數(shù)共有( 。
A.7個B.8個C.9個D.10個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=1+log2x(1≤x≤4),求函數(shù)g(x)=f2(x)+f(x2)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設f(n)表示前n年的純利潤總和(f(n)=前n年的總收入-前n年的總支出-投資額).
(Ⅰ)該廠從第幾年開始盈利?(盈利指的是純利潤總和要大于0)
(Ⅱ)該投資商計劃在年平均純利潤達到最大時,以48萬元出售該廠.問:需多少年后其年平均純利潤才可達到最大,此時共獲利多少?

查看答案和解析>>

同步練習冊答案